(Nationally Accredited With 'A' Grade by NAAC 4th Cycle)

(Affiliated to Bharathidasan University, Tiruchirappalli)

NAGAPATTINAM - 611 001

PG & RESEARCH DEPARTMENT OF CHEMISTRY

SYLLABUS B.Sc. CHEMISTRY 2024-2027

PROGRAMME EDUCATIONAL OBJECTIVE (PEO)

- 1. To develop the skill in problem solving, critical thinking and enhance the knowledge in chemistry.
- 2. To provide the students an in-depth understanding of the basic concepts of chemical sciences.
- 3. To provide a detailed knowledge of terms, concept, methodologies, principles and experimental techniques involved in various fields of chemistry.
- 4. To prepare the students to pursue higher studies and to develop sustainable innovative solutions for the nation.

Part	Title of the part	No. of Courses	Hours	Credit
Ι	Language courses	4	24	12
	(Tamil/Hindi/French/Arabic/Sanskrit)			
II	English Language courses	4	24	12
III	Core Courses (T- 9, P-5)	14	70	60
	Minor (Allied T-4/ 5, P-2/1)	6	24	16
	Discipline Specific course	3	10	9
	Project	1	3	3
IV	Skill Enhancement Course	4	8	8
	Ability Enhancement Course	3	6	6
	Multidisciplinary course (NME)	2	4	4
	Environmental Studies	1	2	2
	Value Education	1	2	2
	Soft Skill Development	1	2	2
	Summer Internship / Industrial	-	-	2
	activities			
	Gender Studies	1	1	1
V	Extension Studies	-		1
	Total	45	180	140

EXTRA CREDIT SCHEME STRUCTURE – 2024 - 2027

Courses	Credits	Semester	Marks
Extra Credit Courses I(Professional English)	2	Ι	100
ECPED - ECC I - PROFESSIONAL ENGLISH FOR PHYSICAL SCIENCES			
(Physics, Chemistry & Geology)			
Extra Credit Courses II (Skill Course I – Add on)	2	Π	100
Extra Credit Courses III(Skill Course II- Add on)	2	III	100
Extra Credit Courses IV(Skill Course III- Add on)	2	IV	100
Value added course I (Multidisciplinary)	2	V	100
Value added Course II (Same disciplinary)	2	VI	100
Total	12		

B.Sc Chemistry Course Structure under CBCS For the candidate admitted from the year 2024-25 onwards

		SEMESTER – I					
			S	ST	1 ION	MAX.	MARKS
PART	COURSE TYPE	COURSES	HOUH	CREDI'	EXAN DURATI	CIA	EXT
Part I	Language Course I	LC I – Pothu Tamil I	6	3	3	25	75
Part II	English Course I	ELC I –General English I	6	3	3	25	75
	Core Course I	CC I - General Chemistry I	5	4	3	25	75
Part III	Core Practical I	CP I -Quantitative Inorganic Estimation & Inorganic Preparation	3	-	-	-	-
	First Minor Course I	FMC I -Zoology I / Maths I	4	3	3	25	75
	First Minor Practical I	FMP I-Zoology II (P)/ Maths II	2	-	-	-	-
Part IV	Skill Enhancement Course I	SEC I- Fundamentals of Chemistry	2	2	3	25	75
	VE	Value Education	2	2	3	25	75
*Extra Credit I	Extra Credit	Professional English for Physical Sciences		2	-	_	100
	Total	8+1	30	17+2			
		SEMESTER – II					
			S	ST	1 ION	MAX.	MARKS
PART	COURSE TYPE	COURSES	HOUR	CREDI	EXAN	CIA	EXT
Part I	Language Course II			-	- D		
Part II		LC II- Pothu Tamil II	6	3	3	25	75
1 41 (11	English Course II	LC II- Pothu Tamil II ELC II –General English II	6 6	3	3 3	25 25	75 75
1 411 11	English Course II Core Course II	LC II- Pothu Tamil II ELC II –General English II CC II - General Chemistry II	6 6 6	3 3 5	3 3 3	25 25 25	75 75 75
Part III	English Course II Core Course II Core Practical I	LC II- Pothu Tamil II ELC II –General English II CC II - General Chemistry II CP I - Quantitative Inorganic Estimation and Inorganic Preparation	6 6 6 2	3 3 5 3	3 3 3 3	25 25 25 40	75 75 75 60
Part III	English Course II Core Course II Core Practical I First Minor Practical I	LC II- Pothu Tamil II ELC II –General English II CC II - General Chemistry II CP I - Quantitative Inorganic Estimation and Inorganic Preparation FMP I-Zoology II (P)/ Maths II	6 6 6 2 2	3 3 5 3 2	3 3 3 3 3	25 25 25 40 40/25	75 75 75 60 60/75
Part III	English Course II Core Course II Core Practical I First Minor Practical I First Minor Course II	LC II- Pothu Tamil II ELC II –General English II CC II - General Chemistry II CP I - Quantitative Inorganic Estimation and Inorganic Preparation FMP I-Zoology II (P)/ Maths II FMC II-Zoology III / Maths III	6 6 2 2 4	3 3 5 3 2 3	3 3 3 3 3 3 3	25 25 25 40 40/25 25	75 75 75 60 60/75 75
Part III Part IV	English Course II Core Course II Core Practical I First Minor Practical I First Minor Course II Skill Enhancement Course II	LC II- Pothu Tamil IIELC II –General English IICC II - General Chemistry IICP I - Quantitative Inorganic Estimation and Inorganic PreparationFMP I-Zoology II (P)/ Maths IIFMC II-Zoology III / Maths IIIIndustrial Water Pollution Measurement & Remediation	6 6 2 2 4 2	3 3 5 3 2 3 2	3 3 3 3 3 3 3 3 3	25 25 25 40 40/25 25 25	75 75 75 60 60/75 75 75
Part III Part IV	English Course II Core Course II Core Practical I First Minor Practical I First Minor Course II Skill Enhancement Course II EVS	LC II- Pothu Tamil II ELC II –General English II CC II - General Chemistry II CP I - Quantitative Inorganic Estimation and Inorganic Preparation FMP I-Zoology II (P)/ Maths II FMC II-Zoology III / Maths III Industrial Water Pollution Measurement & Remediation Environmental Studies	6 6 2 2 4 2 4 2 2	3 3 5 3 2 3 2 2 2	3 3 3 3 3 3 3 3 3 3	25 25 25 40 40/25 25 25 25 25	75 75 75 60 60/75 75 75 75 75
Part III Part IV *Extra Credit II	English Course II Core Course II Core Practical I First Minor Practical I First Minor Course II Skill Enhancement Course II EVS Extra Credit	LC II- Pothu Tamil II ELC II –General English II CC II - General Chemistry II CP I - Quantitative Inorganic Estimation and Inorganic Preparation FMP I-Zoology II (P)/ Maths II FMC II-Zoology III / Maths III Industrial Water Pollution Measurement & Remediation Environmental Studies Certificate Course	6 6 2 2 4 2 2 4 2 2 -	3 3 5 3 2 3 2 2 2 2		25 25 25 40 40/25 25 25 25 25 -	75 75 60 60/75 75 75 75 75 100

		SEMESTER – III					
			S	S	_ ON	M	AX.
PART	COURSE TYPE	COURSES	UR	DI	AN ATI	MA	RKS
			OH	CRE	EX DUR∕	CIA	EXT
Part I	Language Course III	LC III-Pothu Tamil III	6	3	3	25	75
Part II	English Course III	ELC III -General English III	6	3	3	25	75
	Core Course III	CC III -General Chemistry III	6	6	3	25	75
Part III	Core Practical II	CP II - Qualitative Inorganic analysis (P)	2	-	-	-	-
1 411 111	Second Minor Course I	SMC I- Physics I	4	3	3	25	75
	Second Minor Practical I	SMP I - Physics II (P)	2	-	-	-	-
Dout IV	Multi Disciplinary Course I	NME I -Food Chemistry	2	2	3	25	75
Part IV	Skill Enhancement Course III	SEC III-Polymer Chemistry	2	2	3	25	75
*Extra Credit III	Extra Credit	Medical Lab Techniques (Theory & Practical)	-	2	-	-	100
	Total	8+1	30	19+2			
		SEMESTER – IV					
				STI	M	MA MA	AX. RKS
PART	COURSE TYPE	COURSES	ПОН	CREI	EXA DURA7	CIA	EXT
Part I	Language Course IV	LC IV – Pothu Tamil IV	6	3	3	25	75
Part II	English Course IV	ELC IV –General English IV	6	3	3	25	75
	Core Course IV	CC IV -General Chemistry IV	5	5	3	25	75
Part III	Core Practical II	CP II - Qualitative Inorganic analysis (P)	3	3	3	40	60
	Second Minor Practical I	SMP I - Physics II (P)	2	2	3	40	60
	Second Minor Course II	SMC II-Physics III	4	3	3	25	75
Part IV	Multi Disciplinary Course II	NME II -Chemistry in Daily life	2	2	3	25	75
Tattiv	Ability Enhancement Course -I	AEC I - Pharmaceutical Chemistry	2	2	3	25	75
*Extra Credit IV	Extra Credit	Quantitative Aptitude	-	2	-	-	100
	Total	8+1	30	23+2			

		SEMESTER – V					
			JRS	STIC	LM TION	M MA	AX. RKS
PART	COURSE TYPE	COURSES	lOH	CREI	EXA DURA	CIA	EXT
	Core Course V	CC V - Organic Chemistry I	6	5	3	25	75
	Core Course VI	CC VI - Physical Chemistry I	6	6	3	25	75
	Core Course VII	CC VII - Inorganic Chemistry I	5	4	3	25	75
Part III	Core Practical III	CP III - Organic Qualitative Analysis & Organic Preparation (P)	3	3	3	40	60
	Core Practical IV	CP IV- Physical Chemistry (P)	3	3	3	40	60
	Discipline Specific Elective –	DSE I - Analytical Chemistry	3	3	3	25	75
	Ability Enhancement Course II	AEC II-Applied Chemistry	2	2	3	25	75
Part IV	SSD	Soft Skill development	2	2	3	25	75
	Summer Internship/Ind. Training		-	2			
*Extra Credit 5	Extra Credit	Organic Farming (Other Major Students)	_	2	-	-	100
	Total	9+1	30	30 +2			
		SEMESTER – VI					
		SEMESTER - VI					
			S	ST	M ION	M MA	AX. ARKS
PART	COURSE TYPE	COURSES	HOURS	CREDITS	EXAM DURATION	M MA CIA	AX. ARKS EXT
PART	COURSE TYPE Core Course VIII	COURSES CC VIII - Organic Chemistry II	9 HOURS	9 CREDITS	c EXAM DURATION	M MA CIA 25	AX. ARKS EXT 75
PART	COURSE TYPE Core Course VIII Core Course IX	COURSES CC VIII - Organic Chemistry II CC IX - Physical Chemistry -II	HOURS 6	0	EXAM DURATION	M MA CIA 25 25	AX. RKS EXT 75 75
PART Part III	COURSE TYPECore Course VIIICore Course IXCore Practical V	COURSES CC VIII - Organic Chemistry II CC IX - Physical Chemistry -II CP V - Gravimetric Analysis, Physical Constant Determination and Spectrophotometry	6 6 3	CKEDILS 6 3	EXAM 5 DURATION 5	M MA CIA 25 25 40	AX. IRKS EXT 75 75 60
PART Part III	COURSE TYPECore Course VIIICore Course IXCore Practical VCore Course X	COURSES CC VIII - Organic Chemistry II CC IX - Physical Chemistry -II CP V - Gravimetric Analysis, Physical Constant Determination and Spectrophotometry CC X - Project	SUDOH 6 6 3 3	CKEDILS 0 6 0 3 3	EXAM BDURATION 3 3	MA MA 25 25 40 25	AX. JRKS EXT 75 75 60 75
PART Part III	COURSE TYPE Core Course VIII Core Course IX Core Practical V Core Course X Discipline Specific Elective –II	COURSES CC VIII - Organic Chemistry II CC IX - Physical Chemistry -II CP V - Gravimetric Analysis, Physical Constant Determination and Spectrophotometry CC X - Project DSE II - Fundamentals of Spectroscopy	6 6 3 3 3	CKEDI1S 0 0 3 3 3	EXAM 3 3 3 3 3	MA MA 25 25 40 25 25	AX. IRKS EXT 75 75 60 75 75 75
PART Part III	COURSE TYPECore Course VIIICore Course IXCore Practical VCore Course XDiscipline SpecificElective –IIDiscipline SpecificElective –III	COURSES CC VIII - Organic Chemistry II CC IX - Physical Chemistry -II CP V - Gravimetric Analysis, Physical Constant Determination and Spectrophotometry CC X - Project DSE II - Fundamentals of Spectroscopy DSE III- Inorganic Chemistry -II	SUDOH 6 6 3 3 3 4	CUEDILS 6 6 3 3 3 3	EXAM BDURATION 3 3 3 3 3	MA MA 25 25 40 25 25 25 25 25	AX. JRKS EXT 75 75 60 75 75 75 75
PART Part III Part IV	COURSE TYPECore Course VIIICore Course IXCore Practical VCore Course XDiscipline SpecificElective –IIDiscipline SpecificElective –IIIAbility EnhancementCourse -II	COURSES CC VIII - Organic Chemistry II CC IX - Physical Chemistry -II CP V - Gravimetric Analysis, Physical Constant Determination and Spectrophotometry CC X - Project DSE II - Fundamentals of Spectroscopy DSE III - Inorganic Chemistry -II AEC II - Agricultural Chemistry	SHOOH 6 6 3 3 3 4 2	CGEDILZ 6 6 3 3 3 3 2	BDURATION 3 3 3 3 3 3 3 3 3	MA CIA 25 25 40 25 25 25 25 25 25	AX. JRKS EXT 75 75 60 75 75 75 75 75
PART Part III Part IV	COURSE TYPECore Course VIIICore Course IXCore Practical VCore Course XDiscipline SpecificElective –IIDiscipline SpecificElective –IIIAbility EnhancementCourse -IISkill EnhancementCourse SEC -IV	COURSES CC VIII - Organic Chemistry II CC IX - Physical Chemistry -II CP V - Gravimetric Analysis, Physical Constant Determination and Spectrophotometry CC X - Project DSE II - Fundamentals of Spectroscopy DSE III- Inorganic Chemistry -II AEC II - Agricultural Chemistry SEC IV - Fuel Chemistry	SECOND 6 6 3 3 3 4 2 2	CGEDILZ 0 6 6 3 3 3 3 2 2	EXAM BDURATION 3 3 3 3 3 3 3 3 3 3	MA MA 25 25 40 25 25 25 25 25 25 25	AX. RKS EXT 75 75 60 75 75 75 75 75 75 75 75
PART Part III Part IV Part V	COURSE TYPECore Course VIIICore Course IXCore Practical VCore Course XDiscipline SpecificElective –IIDiscipline SpecificElective –IIIAbility EnhancementCourse -IISkill EnhancementCourse SEC -IVGender Studies	COURSES CC VIII - Organic Chemistry II CC IX - Physical Chemistry -II CP V - Gravimetric Analysis, Physical Constant Determination and Spectrophotometry CC X - Project DSE II - Fundamentals of Spectroscopy DSE III - Inorganic Chemistry -II AEC II - Agricultural Chemistry SEC IV - Fuel Chemistry GS	SUDOH 6 6 3 3 3 4 2 2 1	CGEDILS 6 6 3 3 3 2 1	DORRATION BURATION 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	MA CIA 25 25 40 25 25 25 25 25 25 25 25 25 25	AX. IRKS EXT 75 75 60 75 75 75 75 75 75 75 75 75 75
PART Part III Part IV Part V	COURSE TYPECore Course VIIICore Course IXCore Practical VCore Course XDiscipline SpecificElective –IIDiscipline SpecificElective –IIIAbility EnhancementCourse SEC -IVGender Studies	COURSES CC VIII - Organic Chemistry II CC IX - Physical Chemistry -II CP V - Gravimetric Analysis, Physical Constant Determination and Spectrophotometry CC X - Project DSE II - Fundamentals of Spectroscopy DSE III- Inorganic Chemistry -II AEC II - Agricultural Chemistry SEC IV - Fuel Chemistry GS Extension Activity	SNOOH 6 6 3 3 3 4 2 2 1	CGEDILS 6 6 3 3 3 3 2 2 1	DURATION EXAM 3 3 3 3 3 3 3 3 3 3 -	MA CIA 25 25 40 25 25 25 25 25 25 25 25 25 25	AX. RKS EXT 75 75 60 75 75 75 75 75 75 75 75 75 75
PART Part III Part IV Part V Part V *Extra Credit 6	COURSE TYPECore Course VIIICore Course IXCore Practical VCore Course XDiscipline SpecificElective –IIDiscipline SpecificElective –IIIAbility EnhancementCourse SEC -IVGender StudiesExtra Credit	COURSES CC VIII - Organic Chemistry II CC IX - Physical Chemistry -II CP V - Gravimetric Analysis, Physical Constant Determination and Spectrophotometry CC X - Project DSE II - Fundamentals of Spectroscopy DSE III - Inorganic Chemistry -II AEC II - Agricultural Chemistry SEC IV - Fuel Chemistry GS Extension Activity Forensic Science (same discipline)	SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SECON SE	SELECTION COMPORT 6 6 3 3 3 3 2 2 1 1 2 1	EXYM 3 3 3 3 3 3 3 3 3 3 3 3 - - -	MA MA 25 25 40 25 25 25 25 25 25 25 25 25 25 - -	AX. RKS EXT 75 75 60 75 75 75 75 75 75 75 75 75 75

Grand Total – Credit 140 & Extra Credit 12

On successful completion of the programme the students will be able to

- **PSO1**: Acquire in-depth knowledge of the fundamental concepts in all disciplines of chemistry.
- **PSO2**: Disseminate the basics of chemistry and advanced topics and analytical skills in organic, inorganic and physical chemistry.
- **PSO3:** Uphold ethical values in personal life, research and career.
- **PSO4:** Demonstrate laboratory skills, analytical acumen, creatively in academics and research.
- **PSO5:** Apply digital tools to collect, analyze and interpret data and present scientific findings.

PROGRAMME OUTCOMES (PO)

PO 1: Students will possess basic subject knowledge required for higher studies, Professional and applied courses.

PO 2: Students will acquire basic Practical skills & Technical knowledge along with Domain knowledge of different subjects in the science & humanities stream.

PO 3: Students will develop scientific aptitude Integrate skills of analysis, critiquing, Application and creativity.

PO 4: Students will employ appropriate digital tools and techniques necessary in Analysing data and creative design.

PO 5: Students will gain competence to pursue higher learning, research and careers Or will be able to opt for entrepreneurship

Department of Chemistry - UG

Semester-I/ Core Course -I		General Chemistry –I	Course Code:							
Instruction	Hours : 5	Credits: 4	Exam Hours:	3						
Internal Ma	rks: 25	External Marks: 75	Total Marks:	100						
Cognitive	K1 – Recalling									
Level	K2 – Understanding									
	K5 - Applying									
	K4 – Analyzing K5 – Evaluating									
	K6 - Creating	•								
Course	The course aim	IS								
Objectives	To various	atomic models and atomic structure								
	• The wave p	particle duality of matter								
	Periodic tal	ble, periodicity in properties and its application in	n explaining the ch	emical						
	behavior									
	• To nature o	of chemical bonding								
UNIT	• To fundam			HUIDS						
T	A tomio structu			ΠΟΟΚδ						
1	History of aton	n (I. J. Thomson, Rutherford): Moseley's Experi	ment and Atomic							
	number Atom	ic Spectra: Black-Body Radiation and Planck's	quantum theory -	15						
	Bohr's model	of atom – Somerfield's extension of Bohr's At	omic model. The							
	Franck - Hertz	Experiment: Interpretation of H - spectrum: Ph	otoelectric effect							
	Compton effec	t: Dual nature of Matter – De – Broglie wave h	ength – Davisson							
	and Germer exp	periment Heisenberg's Uncertainty Principle. Nu	merical problems							
	involving the c	ore concepts.	F							
II	Introduction t	o Quantum mechanics								
	Classical mech	anics, Wave mechanical model of atom, distinct	ction between a							
	Bohr orbit an	nd orbital; Postulates of quantum mechanic	s; probability							
	interpretation of	of wave functions, Formulation of Schrodinger	wave equation-	15						
	Probability and	l electron density-visualizing the orbitals -Probab	oility density and							
	significance of	Ψ and Ψ^2 .								
	Modern Perio	dic Table								
	Cause of perio	dicity: Features of the periodic table; classificati	on of elements -							
	Periodic trends	s for atomic size- Atomic radii, Ionic radii, io	nization energy,							
	electron affinity	y, electronegativity. Problems involving the core	e concepts.							
III	Structure and	bonding–I								
	Ionic bond -	Lewis dot structure of ionic compounds: pr	operties of ionic							
	compounds: E	nergy involved in ionic compounds: Born Hab	er cycle – lattice							
	energies: Ion p	olarisation – polarising power and polarizability:	Faians' rules	15						
	Problems invol	ving the core concepts.								
	Covalant has	d Shance of orbitale overlap of orbitale	σ and Π handar							
	directed values	u – Shapes of orbitals, overlap of orbitals–	o allu 11 Dollus,							
	BE CH DC	y- nyonaization, volt K theory - shapes of file $I_{\rm res}$ SE. IF, NH, U.O partial indication from (f covolant hand							
		15, 516, 117,11113, 1120. Partial lonic character o	AD AD AD							
	aipolemoment,	application to molecules of the type A_2 , AB,	AD_2 , AD_3 , AD_4 ;							
	percentage 1011	ic character.								

IV	Structure and bonding– II	
	VB theory– application to hydrogen molecule; concept of resonance- resonance structures of some inorganic species– CO_2 , NO_2 , CO_3^{2-} , NO_3^{-} ; limitations of VBT; MO theory - bonding, anti-bonding and nonbonding Orbitals, bond order; MO diagrams of H ₂ , C ₂ , O ₂ , O ₂ ⁺ , O ₂ ⁻ , N ₂ , NO and HF; magnetic characteristics, comparison of VB and MO theories.	15
	Co-ordinate bond: Definition, Formation of a coordinate bond by orbital overlap theory - NH_3^{4+} , O_3 , BF_4 , Al_2Cl_6 , Characteristics of coordinate compounds	
	Metallic bond – electron model, VB model; Band theory- mechanism of conduction in solids; conductors, insulator, semiconductor– types, applications of semiconductors.	
V	Basic concepts in Organic Chemistry and Electronic effects	
	Types of bond cleavage – heterolytic and homolytic; types of reagents- electrophiles, nucleophiles, free radicals. Inductive effect - reactivity of alkyl halides, acidity of halo acids, basicity of amines; inductometric and electromeric effects.	15
	Resonance – resonance energy, conditions for resonance- acidity of phenols, basicity of aromatic amines, stability of carbonium ions, carbanions and free radicals	
	Hyper conjugation – stability of alkenes, bond length. Steric effect – types of steric effect – steric accelerated and steric hindrance.(Basic only)	

- 1. Madan, R. D. and Sathya Prakash, *Modern Inorganic Chemistry*, 2nded.; S.ChandandCompany: New Delhi, 2003.
- 2. Rao, C. N. R.University General Chemistry, Macmillan Publication: New Delhi, 2000.
- 3. Puri,B. R. and Sharma, L. R. Principles of Physical Chemistry,

38thed.; Vishal Publishing Company: Jalandhar, 2002.

- 4. Bruce, P. Y. and Prasad K .J .R. *Essential Organic Chemistry*, Pearson Education: New Delhi, 2008.
- Dash UN, Dharmarha OP, SoniP. L. Textbook of Physical Chemistry, Sultan Chand & Sons: New Delhi, 2016

Reference Books:

- 1. Maron, S.H. and Prutton C.P. *Principles of Physical Chemistry*, 4thed.; The Macmillan Company: New York, 1972.
- 2. Lee, J. D. Concise Inorganic Chemistry, 4thed.; ELBS William Heinemann: London, 1991.
- 3. Gurudeep Raj, Advanced Inorganic Chemistry, 26thed.; Goel Publishing House: Meerut, 2001.
- 4. Atkins, P. W & Paula, J. Physical Chemistry, 10thed.; Oxford University Press: New York, 2014.
- 5. Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity, 4thed.; Addison,

Wesley Publishing Company: India, 1993.

Web-Resources:

- 1) <u>https://onlinecourses.nptel.ac.in</u>
- 2) http://www.mikeblaber.org/oldwine/chm1045/notes_m.htm
- 3) http://www.ias.ac.in/initiat/sci_ed/resources/chemistry/Inorganic.html
- 4) https://swayam.gov.in/course/64-atomic-structure-and-chemical-bonding
- 5) https://www.chemtube3d.com/

Course Outcomes :

On completion of the course the students should be able to

- **CO1:** E xplain the atomic structure, wave particle duality of matter, periodic properties bonding, and Properties of compounds.
- **CO2:** Classify the elements in the periodic table, types of bonds, electronic effects inorganic compounds, types of reagents.
- **CO3:** Apply the theories of atomic structure, bonding, to calculate energy of a spectral transition, Δx , Δp electronegativity, percentage ionic character and bond order.
- **CO4:** Construct MO diagrams, predict trends in periodic properties, assess the properties of elements, and explain hybridization in molecules.
- **CO5:** Evaluate the relationship existing between electronic configuration, bonding, geometry of molecules and reactions; structure reactivity and electronic effects

			PO					PSO		
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	М	S	S	S
CO3	S	S	S	М	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	М	S	S	S	S	S	S	S	S

Semester-I& II /		Quantitative Inorganic Estimation	Course Code :					
Core Practical	–I	& Inorganic Preparations						
Instruction Hou	urs : 3/2	Credit: 3	Exam Hours: 3					
Internal Marks	:: 40	External Marks: 60	Total Marks: 100					
Cognitive	K1 – Recalli	ng						
Level	K2 – Unders	standing						
	K3 - Applyi	ng						
	K4 – Analyzing							
	K5 – Evalua	iting						
	K6 – Creati	ng						
Course	This course	aims at providing knowledge on						
Objectives	• laborat	ory safety						
	handling glass wares							
	Quantitative estimation							
	Preparation of inorganic compounds							
CONTENT								

I.INORGANIC ESTIMATIONS:

1. Acid – Base Titration

Estimation of Hydrochloric Acid using Sodium hydroxide. Estimation of Sodium Carbonate using Sulphuric acid.

2. Permanganometry

Estimation of Oxalic acid using standard ferrous sulphate Estimation of Ferrous Sulphate using standard Oxalic acid Estimation of Calcium using standard Oxalic acid

3. Dichrometry

Estimation of ferric alum using standard dichromate (external indicator) Estimation of ferric alum using standard dichromate (internal indicator)

4. Iodometry

Estimation of copper using standard dichromate Estimation of Potassium Permanganate using standard dichromate

5. Complexometry

Estimation of hardness of water using EDTA Estimation of Magnesium using EDTA Estimation of Zinc using EDTA

II.PREPARATION OF INORGANIC COMPOUNDS:

1.Tetraamminecopper(II) sulphate 2.Hexamminecobalt(III)chloride

III. Preparation of Buffer Solution

1.Sodium Acetate –Acetic acid

2. Ammonium Chloride – Ammonium hydroxide

- 1. Venkateswaran, V.; Veeraswamy, R.; Kulandivelu, A. R. *Basic Principles of Practical Chemistry*, 2nd ed.; Sultan Chand & Sons: New Delhi, 1997.
- 2. Nad, A. K.; Mahapatra, B.; Ghoshal, A.; *Anadvanced course in Practical Chemistry*, 3rd ed.; New Central Book Agency: Kolkata, 2007.

Reference Books:

1. Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas ,M.; Sivasankar, B.; *Vogel's Textbook of Quantitative Chemical Analysis*, 6th ed.;Pearson Education Ltd: New Delhi, 2000.

Web–Resources:

1) http://www.federica.unina.it/agraria/analytical-chemistry/volumetric-analysis 2) https://chemdictionary.org/titration-indicator/

Course Outcomes:

On successful completion of the course the students should be able to

CO1: explain the basic principles involved in titrimetric analysis and inorganic preparations.

CO2: compare them methodologies of different titrimetric analysis.

CO3: calculate the concentrations of unknown solutions in different ways and develop the skill to estimate the amount of a substance present in a given solution.

CO4: assess the yield of different inorganic preparations and identify the end point of various Titrations.

			РО					PSO		
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	S
CO3	S	S	S	М	S	S	М	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S

Semester-I /	Semester-I / Skill Fundamentals of Chemistry Course Code :		,						
Instruction	Hours: 2	Credits: 2	Exam Hours: 3						
Internal Ma	rks: 25	External Marks: 75	Total Marks: 100						
Cognitive	K1 – Recalling								
Level	K2 – Understa	K2 – Understanding							
	K3 - Applying								
	K4 – Analyzing	5							
	K5 – Evaluatin	g							
0	K6 - Creating								
Course	This course air	ns at providing knowledge on							
Objectives	• matters an	d its existence							
	• periodic e	lements							
	 quantitativ 	e aspects of analysis							
	• chemical b	bonding and its theories							
	• fundament	tal concept of organic chemistry							
UNIT	CONTENT								
Ι	Matter and its existence – solids, liquids and gases – atoms – constituent of an								
	atom – proton, electron and neutron – elements – molecule – acid – base and 6								
	salt – pH and its importance.								
II	Elements & it	s Importance in life							
	Periodic Table	- classification - old and modern	periodic tables. Extraction of						
	metals, Fe, Au	, Pt – role of metal ions in biolo	ogical systems – haemoglobin	6					
	(structure only	r) – Non metals – oxygen – cher	mistry of respiration, nitrogen						
	cycle and Fixa	tion of atmospheric Nitrogen.							
III	Quantitative A	Aspects of analysis							
	S.I Units, Dis	tinction between Mass and Weig	ght. Moles, Millimoles, Milli	6					
	equivalence,	Molality, Molarity, Normality,	Percentage by Weight and						
	Volume, ppm,	ppb. Density and Specific Grav	rity of Liquids. Stoichiometry						
	Calculations.								
IV	Chemical Bon	ding							
	Definition –Oc	tet rule – types of bond – ionic bo	nd, covalent bond, coordinate	6					
	and hydrogen b	onding.							
V	Structural Re	presentation Of Organic Compo	unds						
	Complete, con	densed and Bond- line structural	formulas, Three dimensional	6					
	representations	of organic molecules - Nomencla	ature of organic compounds –						
	IUPAC								

1.Madan, R. D. and Sathya Prakash, *Modern Inorganic Chemistry*, 2nd ed.; S. Chand and Company: New Delhi, 2003.

2.Rao, C. N. R. University General Chemistry, Macmillan Publication: New Delhi, 2000.

3.Puri,B. R. and Sharma, L. R. *Principles of Physical Chemistry*, 38th ed.; Vishal Publishing Company: Jalandhar, 2002.

4.Bahl.B.S., Arun Bahl, Advanced Organic Chemistry, 3rd edition, S.Chand & Company, New Delhi, 2003.

Reference Books:

1. Atkins, P. W. & Paula, J. *Physical Chemistry*, 10th ed.; Oxford University Press: New York, 2014.

2.Huheey, J. E. *Inorganic Chemistry: Principles of Structure and Reactivity*, 4th ed.; Addison, Wesley Publishing Company: India, 1993.

3.Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M.; Sivasankar, B.; *Vogel's Textbook of Quantitative Chemical Analysis*, 6th ed.; Pearson Education Ltd: New Delhi, 2000

Web-Resources:

- 1.https://onlinecourses.nptel.ac.in
- 2.http://www.mikeblaber.org/oldwine/chm1045/notes_m.htm
- 3.http://www.ias.ac.in/initiat/sci_ed/resources/chemistry/Inorganic.html
- 4.https://swayam.gov.in/course/64-atomic-structure-and-chemical-bonding

Course Outcomes:

On completion of the course the students should be able to

CO1: know the matter, constituents of atoms

- CO2: understand periodic table and role of elements in life.
- CO3: evaluate the concentration units in solutions
- **CO4:** aware about bonding and its types
- **CO5:** predict the nomenclature of simple organic compounds

		РО					PSO				
CO/PO	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	S	S	S	S	S	S	М	S	S	S	
CO3	S	S	S	S	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	М	S	S	S	S	S	S	S	S	

Department of Chemistry - UG

	Chemistry of Halogens: Peculiarities of fluorine Halogen acids (HF, HCl, HBr and HI), oxides and oxy acids (HClO ₄). Inter-halogen compounds (ICl, ClF ₃ , BrF ₅ and IF ₇), pseudohalogens [(CN) ₂ and(SCN) ₂]	
	Noble gases: Position in the periodic table. Preparation, properties and structure of XeF_2 , XeF_4 , XeF_6 and $XeOF_4$; uses of noble gases.	
IV	Hydrocarbon Chemistry - I	
	Petroproducts: Fractional distillation of petroleum; cracking, isomerisation, alkylation, reforming and uses	
	Alkenes- Nomenclature, general methods of preparation– Mechanism of elimination reactions– E1and E2 mechanism- factors in fluencing– stereochemistry – orientation – Hofmann and Saytzeffrules. Reactions of alkenes – addition reactions – mechanisms – Markownikoff's rule, oxidation reactions – hydroxylation, oxidative degradation, epoxidation, ozonolysis; polymerization.	18
	Alkadienes - Nomenclature- classification–isolated, conjugated and cumulated dienes; stability of conjugated dienes; mechanism of electrophilic addition to conjugated dienes - 1, 2 and 1, 4 additions; free radical addition to conjugated dienes– Diels–Alder reactions.	
	Alkynes- Nomenclature; general methods of preparation, properties and reactions; acidic nature of terminalalkynes and acetylene, polymerization and isomerisation.	
	Cyclo alkanes- Nomenclature, Relativest ability of cyclo alkanes, Bayer's straintheory and its limitations. Conformational and analysis of cyclohexane, mono and disubstituted cyclohexanes. Geometrical isomerism in cyclohexanes.	
V	Hydrocarbon Chemistry – II	
	Benzene -Source, structure of benzene, stability of benzene ring, molecular orbital picture of benzene, aromaticity, Huckel's (4n+2) rule and its applications. Electrophilic substitution reactions - General mechanism of aromatic electrophilic substitution - nitration, sulphonation, halogenation, Friedel-Craft's alkylation and acylation. Mono substituted and disubstituted benzene - Effect of substituent – orientation and reactivity.	18
	Polynuclear Aromatic hydrocarbons: Naphthalene – nomenclature, Haworth synthesis; physical properties, reactions – electrophilic substitution reaction, nitration, sulphonation, halogenation, Friedel – Crafts acylation & alkylation, preferential substitution at ortho and para - position – reduction, oxidation – uses.	
	Anthracene – synthesis by Elbs reaction, Diels – Alder reaction and Haworth synthesis; physical properties; reactions - Diels-Alder reaction, uses.	

- 1. Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2nd ed, S. Chandand Company, New Delhi.
- 2. Sathya Prakash, Tuli G D,Basu S K and Madan R D, (2003), Advanced Inorganic Chemistry, 17th ed., S. Chandand Company, New Delhi.
- 3. Bahl B S, Arul Bhal, (2003), Advanced Organic Chemistry, 3rd ed., S. Chandand Company, New Delhi.
- 4. Tewari K S, Mehrothra S N and Vishnoi N K, (1998) ,Textbook of Organic Chemistry, 2nd ed., Vikas Publishing House, New Delhi.
- 5. Puri B R, Sharma L R, (2002), Principles of Physical Chemistry, 38th ed., Vishal Publishing Company, Jalandhar.

Reference Books:

- 1. Maron S H and Prutton C P, (1972), Principles of Physical Chemistry, 4th ed., The Macmillan Company, New york.
- 2. Barrow G M, (1992), Physical Chemistry, 5th ed., Tata Mc GrawHill, New Delhi.
- 3. Lee J D, (1991), Concise Inorganic Chemistry, 4th ed., ELBS William Heinemann, London.
- 4. Huheey J E, (1993), Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., Addison Wesley Publishing Company, India.
- Gurudeep Raj, (2001), Advanced Inorganic Chemistry Vol–I, 26th ed., Goel Publishing House, Meerut. 6
- 6. Agarwal O P, (1995), Reactions and Reagents in Organic Chemistry, 8th ed., Goel Publishing House, Meerut.

Web-Resources:

- 1. https://onlinecourses.nptel.ac.in
- 2. http://cactus.dixie.edu/smblack/chem1010/lecture_notes/4B.html
- 3. http://www.auburn.edu/~deruija/pdareson.pdf

Course Outcomes:

On completion of the course the students should be able to

- **CO1:** explain the concept of acids, bases and ionic equilibria; periodic properties of and p block elements, preparation and properties of aliphatic and aromatic hydrocarbons
- **CO2:** discuss the periodic properties of s and p- block elements, reactions of aliphatic and aromatic hydrocarbons and strength of acids
- **CO3:** classify hydrocarbons, types of reactions, acids and bases, examine the properties s and pblock elements, reaction mechanisms of aliphatic and aromatic hydrocarbons
- **CO4:** explain theories of acids, bases and indicators, buffer action and important compounds of sblock elements.
- **CO5:** assess the application of hard and soft acids indicators, buffers, compounds of s and p- block elements and hydrocarbons

	РО					PSO				
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	М	S	S	М
CO3	S	S	S	М	S	S	S	S	М	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	М	S	S	S	S	М	S	S	S

Department of Chemistry - UG Mapping of Course Outcomes with Programme Outcomes & Programme Specific Outcome

Semester-II/ Sl	sill	Industrial water pollution	Course Code:							
Enhancement	Course - II	measurement and Remediation								
Instruction Ho	urs:2	Credits: 2	Exam Hours: 3							
Internal Marks	s: 25	External Marks: 75	Total Marks: 100							
Cognitive	K1 – Recalli	ng								
Level	K2 – Unders	K2 – Understanding								
	K3 - Applyin	K3 - Applying								
	K4 – Analyz	K4 – Analyzing								
	K5 – Evalua	5 – Evaluating								
Course	This course	aims at giving an overall view of the								
Objectives		anns at giving an overall view of the								
Objectives	• Sour	Ces of Contamination in Ground water								
	• Sour	ces of Water Pollution								
	• Samj	pling Methods								
	Prote	ection Rule								
	Drin	king Water Specification								
UNIT		HOURS								
Ι	Water Polluti	ion : Definition of water pollution, Pollution	tants, Physical							
	pollution, Ch	6								
	pollution									
	Sources of ground water contamination: Domestic waste, Agricultural									
	waste, Soluble effluents, Industrial wastes, Runoff from urban areas.									
	soluble efflue	ents.								
II	Eutrophicatio	on - Causes and effect, Oil contamination	n of water.							
	Sources of w	ater pollution: Sewage, Industrial effluer	nts, Detergents,	6						
	Toxic metals									
III	Sampling me	ethods and associated safety measures	for Water Quality							
	Index. Prelin	ninary idea regarding influence of disso	lved oxygen, BOD.	6						
	Causes fecal	coliform and temperature	,8,8,,							
IV	Environment	Protection Rule 1986 as amended fro	om time to time by							
	Department of	of Environment and forest – Government	t of India	6						
	Schedule I –	- Industrial Discharge allowable limits	· (a) Caustic Soda							
	Industry (b)	Petroleum refinery (c) Eugitive emission	(d) Sugar Industry							
	(a) Thormal	Power plants (f)Cotton taxtila industry	(a) Dva and Dva							
	(e) Thermaliat	Tower plants (f)Cotton textile industry	(g) Dye and Dye							
	Schodulo V	I Dort A Concred Standarda	for discharge of							
	Schedule v	al Dallutanta	for discharge of							
X 7	Environment	ai ronutants.								
V	Section 86:	E								
	water. Introd	uction of requirements of IS 10500: 199	1 edition 2.2 (2003-	O						
	09) – Drinkir	ng water specification.								

1. Water Pollution – B. K. Sharma – GOEL Publishing House, Meerut, 2005.

Reference Books:

1.Field manual for water quality Monitorin – Mark K. Mitchell & William B.Stapp; 9th edition,

 $Thom son-Shore-Printers,\ Michigam.$

- 2. Environment Protection Rule, 1986.
- 3. IS 10500: 1991 Edition 2.2 (2003-09) Drinking water specification.

Course Outcomes:

On completion of the course the students should be able to

CO1:know the sources of contamination of ground water.

CO2: learn the sources of water pollution.

CO3: distinguish the sampling methods and safety measures in water quality index

CO4:acquire knowledge about the environmental protection rule.

CO5: assess the drinking water specification.

		РО					PSO				
CO/PO	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	М	S	S	S	М	М	S	S	S	М	
CO3	S	S	S	М	S	S	S	S	М	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	М	S	S	S	S	М	S	S	S	

Semester-III /	, TTT	General Chemistry –III	Course Code:	· · ·						
Lore Course	-111 ours • 6	Credita: 6	Exam Hound 2							
Instruction H	0018:0	External Marks: 75	Total Marks: 100							
Cognitivo	K1 Docallir	External Marks. 75								
Level	K2 – Understanding K3 - Applying K4 – Analyzing K5 – Evaluating K6 - Creating									
Course	This course aims to provide a knowledge on									
Objectives	• The physical properties of gases liquids solids and X-ray diffraction of solids									
	• Eundomo	ntale of nuclear chamistry and nuclea	r weste menegement	1 5011051						
	• Fundame	entais of nuclear chemistry and nuclea	r waste management.							
	Applicate	ions of nuclear energy								
	Basic che	emistry of halo-organic compounds, p	henol and other aromatic	>						
	alcohols.									
	Preparati	on and properties of phenols and alco	hols.							
UNIT	CONTENT			HOURS						
Ι	Gaseous state	4								
	 Kinetic molecular model of a gas : postulates and derivation from the kinetic gas equation; The Maxwell –Boltzmann distribution of speed of molecules-average, root mean square and most probable velocity and average kinetic energy, Collision frequency; collision diameter; mean free path and viscosity of gases. Real gases: Deviations from ideal gas behaviour, (Andrew's and Amagat's plots); compressibility factor, Z, and its variation with pressure for different gases. Equations of states for real gases-vander Waal's equation, Boyle temperature; Numerical problems based on equations of states for real gases, isotherms of real gases–critical phenomena–isotherms of CO2- continuity of state– Vanderwaal's equation and the critical state; law of corresponding states-liquefaction of gases; numerical 									
	problems involving the core concepts.Liquid and Solid State Properties of Liquids Surface tension, viscosity and their applications. Crystalline and amorphous – differences-geometry, isotropy and anisotropy, melting point; isomorphism, polymorphism. Crystals-size and shape; laws of crystallography; symmetry elements- plane, Centre and axis ; Miller indices, unit cells and space lattices; classification of crystal systems; Bravais lattices; X-ray diffraction-Bragg's equation18Packing in atomic solids-simple cubic, body centered cubic, face centered and hexagonal close packing ;Co-ordination number in typical structures-NaCl, CsCl, ZnS, TiO2; comparison of structure and properties of diamond and graphite;. numerical problems involving core concepts Defects in solids – stoichiometric and non stoichiometric defects.18									

III	Nuclear Chemistry	
	Natural radioactivity $-\alpha$, β and γ rays; half-life period; Fajan–Soddy group displacement law; Geiger–Nattal rule; isotopes, isobars, isotones; nuclear isomerism; radioactive decay series; magic numbers; units–Curie, Rutherford, Roentgen; nuclear stability-neutron-proton ratio; binding energy; packing fraction; mass defect. Simple calculations involving mass defect and decay constant and t1/2 and radioactive series. Isotopes–uses–tracers–determination of age of rocks by radio carbon dating. (Problems to be worked out)	18
	Nuclear energy; nuclear fission and fusion – major nuclear reactors in	
IV	Halogen derivatives Aliphatic halogen derivativesNomenclature and classes of alkyl halides – isomerism, physical properties, Chemical reactions. Nucleophilic substitution reactions– SN1, SN2 and SNi mechanisms with stereochemical aspects and effect of solvent.	18
	Di &Tri Halogen derivatives: Nomenclature, classification, preparation, properties and applications.	
	Aromatic halogen compounds:-Nomenclature, preparation, properties and uses Mechanism of nucleophilic aromatic substitution – benzyne intermediate.	
	Arylalkyl halides: Nomenclature, benzylchloride – preparation – preparation properties and uses	
	Alcohols: Nomenclature, classification, preparation, properties, use; conversions – ascent and descent of series; test for hydroxyl groups. Oxidation of diols by periodic acid and lead tetraacetate.	
V	Phenols Nomenclature; classification, Preparation from diazonium salts, cumene, Dow's process, Raching process; properties – acidic character and effect of substitution on acidity. Reactions – Fries, claisen rearrangement, Electrophilic substitution reactions, Reimer- Teiman, Kolbe, Schmidt, Gatermann synthesis, Libermann, nitro reaction, phthalein reaction. Resorcinol, Catechol, quinol, picricacid–preparation, properties and uses.	18
	Aromatic alcohols Nomenclature, benzylalcohol– methods of preparation– hydrolysis, reduction of benzaldehyde, Cannizzaro reaction, Grignard synthesis, physical properties, reactions–reaction with sodium, phosphorus pentachloride, thionyl chloride, acetic anhydride ,hydrogen iodide, oxidation – substitution on the benzene nucleus, uses.	

1. B. R. Puri, L. R. Sharma, M. S. Pathania; *Principles of Physical Chemistry*, 46th edition, Vishal

Publishing, 2020.

- 2. B. R. Puri, L. R. Sharmaand K. C. Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers and Distributors, New Delhi, thirtieth edition, 2009.
- 3. P. L. Soniand Mohan Katyal, *Textbook of Inorganic Chemistry*, Sultan Chand & amp; Sons, twentieth edition, 2006.
- 4. M. K. Jain, S. C. Sharma, Modern Organic Chemistry, Vishal Publishing, fourth reprint, 2003.
- 5. S. M. Mukherji, and S. P. Singh, *Reaction Mechanism in Organic Chemistry*, Macmillan India Ltd., third edition, 1994.

Reference Books

- 1. T. W. Graham Solomons, Organic Chemistry, John Wiley & amp; Sons, fifth edition, 1992.
- 2. A. Carey Francis, *Organic Chemistry*, Tata Mc Graw-Hill Education Pvt., Ltd., New Delhi, seventh edition, 2009.
- 3. I. L. Finar, *Organic Chemistry*, Wesley Longman Ltd, England, sixth edition, 1996.
- 4. P. L. Soni, and H. M. Chawla *Text Book of Organic Chemistry*, New Delhi, Sultan Chand & Sons, twenty ninth edition, 2007.
- 5. J. D. Lee, *Concise Inorganic Chemistry*, Black well Science, fifth edition, 2005.

Web Resources

- 1. https://nptel.ac.in/courses/104104101Solidstatechemistry
- 2. https://nptel.ac.in/courses/103106071Nuclear industries and safety
- 3. <u>https://nptel.ac.in/courses/104106119</u> Introduction to organic chemistry

Course Outcomes

On completion of the course the students should be able to

CO1: explain the kinetic properties of gases by using mathematical concepts.

CO2: describe the physical properties of liquid and solids; identify various types of crystals with respect to its packing and apply the XRD method for crystal structure determinations.

CO3: investigate the radioactivity, nuclear energy and it's production, also the nuclear waste management.

CO4:write the nomenclature, physical & chemical properties and basic mechanisms of haloorganic compounds and alcohols.

CO5: investigate the named organic reactions related to phenol; explain the preparation and properties of aromatic alcohol including thiol.

			РО					PSO		
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	S	S	S	М	S	S	S	S	М	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	М	S	S	S	S	М	S	S	S

Department of Chemistry - UG

Semester-III & IV/ Core		Qualitative Inorganic Analysis	Course Code:						
Practical-II									
Instruction Hours : 2/3		Credits: 3	Exam Hours: 3						
Internal Marks: 40		External Marks: 60	Total Marks: 100						
Cognitive	K1 – Recalling								
Level	K2 – Understan	K2 – Understanding							
	K3 - Applying								
	K4 – Analyzing	5							
	K5 – Evaluatin	g							
	K6 – Creating								
Course	Course This course aims to develop the skill on systematic analysis of simple inorganic salts and								
Objectives									

CONTENT

- 1. Analysis of simple acid radicals: Carbonate, sulphide, sulphate, chloride, bromide, iodide, nitrate
- 2. Analysis of interfering acid radicals: Fluoride, oxalate, borate, phosphate, arsenate, arsenite.
- 3. Elimination of interfering acid radicals and Identifying the group of basic radicals
- 4. Analysis of basic radicals (group wise): Lead, copper, bismuth, cadmium, tin, antimony, iron, aluminium, arsenic, zinc, manganese, nickel, cobalt, calcium, strontium, barium, magnesium, ammonium
- 5. Analysis of a mixture I to VIII containing two cations and two anions (of which one is interfering type)

Group Experiments:

- 1. pH Measurement- Measurements of different solutions like aerated drinks, fruit juices, shampoos and soaps using pH meter. (Note: Use dilute soaps and dilute shampoos)
- 2. Qualitative analysis of Natural food colours- caramel, Cochineal, Turmeric, Annatto, Chorololphyl and Betain

Text Books:

1. V. Venkateswaran, R. Veeraswamy and A. R. Kulandivelu, Basic Principles of Practical Chemistry, Sultan Chand & Sons, New Delhi, second edition,1997.

Reference Books:

- 1. G. Svehla- Vogel's Quantitative Analysis 7th edition Pearson education Ltd.,
- 2. J. Mendham, R. C. Denney, J. D. Barnes & M. J. K. Thomas- Vogel's Textbook of quantitative Chemical analysis 6th edition Pearson education Ltd.,

Web-Resources:

1. <u>https://www.bookrix.com</u>.

Course Outcomes:

On successful completion of the course the students should be able to

CO1: acquire knowledge on the systematic analysis of Mixture of salts.

CO2: identify the cations and anions in the unknown substance.

	РО					PSO				
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	S

Semester-II	I/ Multi	NME I - Food Chemistry	Course Code:	i Gileinisü y - OO					
Disciplinary	y Course I								
Instruction	Hours: 2	Credits: 2	Exam Hours: 3						
Internal Ma	arks: 25	External Marks: 75	Total Marks: 100						
Cognitive	K1 – Recalling								
Level	K2 – Understan								
	K3 - Applying								
	K4 – Analyzing K5 – Evolucting								
	K6 - Creating								
Course	This course aim	s at giving an overall view of th	e						
Objectives	• Types of fo	od							
	• Food adulte	eration and poisons							
	• Food additi	ves and preservation							
UNIT		CONTENT		HOURS					
I	Food Adultera	Food Adulteration							
	Sources of food, types, advantages of food additives and disadvantages of 6								
	Food adulterants - Common adulterants - adulterants and their detection -								
	Detection of adulterated foods by simple analytical techniques- Black								
	Pepper, Chill powder, Coffee, Common Salt, Dals, Edible oils, Ghee or								
	butter, Honey, N	Ailk, Wheat, Food grains.							
II	Food Poison								
	Food poisons -	- natural poisons - sources and	d symptoms of food borne	6					
	germs – Chemic	al poisons -pesticides, (DDT, Bl	HC, Malathion)-First aid for						
	poison consume	d victims.							
III	Food Additives	1							
	Food additives	- artificial sweeteners - Sad	ccharin – Cyclomate and	6					
	Aspartate Food	flavours - esters, aldehydes and	hetero cyclic compounds –						
	Food colours –	Emulsifying agents – preservativ	ves.						
IV	Beverages								
	Beverages – s	soft drinks – soda –fruit ju	ices- alcoholic beverages-	6					
	examples. Carb	onation- addiction to alcohol –	diseases of liver and social						
	problems.								
V	Edible Oils								
	Fats and oils – p	production of refined vegetable of	oils – preservation - Reuse	6					
	and reheating of	cooking oil - Saturated and uns	aturated fats - iodine value						
	determination o	f iodine value, RM value, sapon	ification values and their						
	significance.								

- 1. Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishing house, 2010.
- 2. Jayashree Ghosh, Fundamental Concepts of Applied Chemistry, S. Chand & Co. Publishers, second edition, 2006.
- 3. Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishning house, 2010.
- 4. Food Chemistry, Dr. L. Rakesh Sharma, Evince publishing, 2022.
- 5. Food processing and preservation, G. Subbulakshmi, Shobha A Udipi, Pdmini S Ghugre, New age international publishers, second edition, 2021.

ReferenceBooks

- 1. H.- D. Belitz, Werner Grosch, Food Chemistry Springer Science & Business Media, 4th Edition, 2009.
- 2. M. Swaminathan, Food Science and Experimental Foods, Ganesh and Company, 1979.
- 3. Hasenhuettl, Gerard. L.; Hartel, Richard. W. Food Emulsifiers and their applications Springer New York 2nd ed. 2008.
- 4. Food Chemistry, H.- D. Belitz, W. Grosch, P. Schieberle, Springer, fourth revised and extended edition, 2009.
- 5. Principles of food chemistry, John M. deMan, John W. Finley, W. Jefferey

Hurst, Chang Yong Lee, Springer, Fourth edition, 2018.

Course Outcomes:

On completion of the course the students should be able to

CO1: learn about Food adulteration – contamination of Wheat, Rice, Milk, Butter.

CO2: get an awareness about food poisons like natural poisons (alkaloids- nephrotoxin) pesticides, DDT, BHC, Malathion

CO3: get an exposure on food additives, artificial sweeteners, Saccharin, Cyclomate and Aspartate in the food industries.

CO4: acquire knowledge on beverages, soft drinks, soda, fruit juices and alcoholic beverages examples. **CO5:** study about fats and oils – Sources of oils – production of refined vegetable oils - preservation. Saturated and unsaturated fats – MUFA and PUFA

~~ ~~			РО			PSO					
СО/РО	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	М	S	S	S	М	S	М	S	S	S	
CO3	S	S	S	М	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	М	S	S	S	S	S	S	S	S	

Semester- I	II / Skill	Polymer Chemistry	Course Code:	,					
Enhanceme	ent Course-III								
Instruction	Hours: 2	Credits: 2	Exam Hours: 3						
Internal Ma	arks: 25	External Marks: 75	Total Marks: 100						
Lovel	KI – Recalling K2 Understan	ding							
Level	K2 - Onderstan K3 - Annlying	unig							
	K4 – Analyzing								
	K5 – Evaluating	Į.							
	K6 - Creating								
Course	This course aims	to provide comprehensive knowledge	on						
Objectives	1. chemistry of	f polymers							
	2. polymer stru	acture, properties and molecular weight	determination						
	3. kinetics of p	olymers							
	4. natural and	synthetic polymer							
	5. constituents	5. constituents and importance of plastics and resins							
UNIT		CONTENT		HOURS					
I	INTRODUCTI	ON							
	Introduction to p	Introduction to polymers and Macro molecules. Molecular forces and							
	Chemical bondin	g in polymers.							
	General methods	of preparation of polymers and classifi	cation of polymers.						
II	MOLECULAR	MOLECULAR WEIGHT OF POLYMERS							
	Polymer structu	Polymer structure - Linear, branched and cross linked polymers Stereo 6							
	chemistry of polymers – Isotactic, syndiotatic and Atactic. Properties of								
	Polymers.								
	Molecular weigl	Molecular weight of Polymers - Number average molecular weight and							
	weight average n	nolecular weight. Viscosity and molecu	lar weight.						
	Osmometry.		C						
III	KINETICS								
	Co polymerizati	on - Definitions –homo and copolymer	s, Block copolymers	6					
	and graft copoly	ners.							
	Kinetics of poly	merization - Kinetics of free radical pol	ymerization kinetics						
	of cationic polyn	nerization. Mean kinetic chain length.	Degree of						
	polymerization.	Inhibition and retardation. Chain transf	er.						
IV	NATURAL &	SYNTHETIC POLYMER							
	Natural and syn	nthetic rubbers, constitution of natur	ral rubber. Thiocol,						
	Polyurethane and	l silicone rubbers. Thermocole polym	ers related to natural	6					
	rubber – Chlorin	ated rubber, oxidized rubber, cyclised r	ubber and ebonite						
	Acrilic polymers	- Polymers of acrylic acid, methacryl	ic acid, and poly						
	acrylates.								
V	PLASTICS & F	RESINS							
	Plastics and Resi	ns - Definitions, Thermoplastic and the	rmo setting resins.	6					
	Constituents of plastics fillers, dyes, pigments, plasticizers, lubricants and								
	catalysts.	,							
	Important f	Important thermonlastic resins acrylics polyvinyl and cellulos							
	derivatives. Im	portant thermo setting resins – Phe	nolic resins. amino						
	resins, epoxy res	ins, alkyd resins and silicone resins.	· · · · · · · · · · · · · · · · · · ·						

 V. R. Gowarikar, N. V. Viswanathan "Polymer science", Wiley Eastern Ltd., New Delhi, 1978.
 M. G. Arora, M. Singh and M. S. Yadav "Polymer Chemistry" 2nd Revised edition, Anmol Publications Private Ltd., New Delhi, 1989

Reference Books

F. W. Bilmeyer, "Text book of Polymer Science", Jr. John Wiley and Sons, 1984.
 B. K. Sharma "Polymer Chemistry", Goel Publishing House, Meerut, 1989.

Web site and e-learning sources

1. https:// www.chemistryguide.org/

2. <u>https://chemcollective.org/home</u>

Course Outcomes:

On completion of the course the students should be able to

- CO1: help students explore about polymers and macromolecules
- CO2: assess the molecular weight of polymers structure and its stereochemistry
- CO3: recognize the kinetics of polymerization
- CO4: distinguish the natural and synthetic polymers
- CO5: how to know plastics and resins

			РО			PSO					
CO/PO	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	М	S	S	S	М	М	S	S	S	S	
CO3	S	S	S	М	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	М	S	S	S	S	М	S	S	S	

Semester-IV		General Chemistry –IV	Course Code:							
Core Course	<u>e -IV</u>		БИЗ							
Instruction	Hours: 5	Credits: 5	Exam Hours: 3							
Internal Ma	rks: 25	External Marks: 75	Total Marks: 100							
Lovel	KI – Kecalling	ading								
Level	$K_2 = UnderstanK_3 = Applying$	lung								
	K4 – Analyzing									
	K5 – Evaluatin	σ								
	K6 – Creating	6								
Course	This course ain	ns to provide a comprehensive knowled	ge on							
Objectives	• thermo	dynamic concepts on chemical processe	es and annlied aspects							
	• thermo	whemical calculations	is and applied aspects.							
	• Thermo			1 6						
	• Transiti	ion elements with reference to periodic	properties and group stud	ly of						
	transition metals.									
	• The organic chemistry of ethers, aldehydes and ketones									
	• The org	ganic chemistry of carboxylic acids								
UNIT	CONTENT									
1	Thermodynamics I									
	Terminology –	Intensive, extensive variables, state, pa	ath functions; isolated,							
	closed and ope	en systems; isothermal, adiabatic, isob	aric, isochoric, cyclic,							
	reversible and	irreversible processes ; First law of	of thermodynamics –	18						
	Concept and	significance of heat(q), work(w),	internal energy(E),							
	enthalpy(H); c	alculations of q, w, E and H for n	reversible, irreversible							
	expansion of ic	leal and real gases under isothermal and	d adiabatic conditions;							
	relation betwe	en heat capacities (Cp & Cv) ; Jou	ule Thomson effect -							
	inversion temp	erature.								
	Thermochamic	try basts of reactions standard stat	as trans of bosts of							
		their complications, standard stat	es, types of fields of							
	reactions and	their applications; effect of temp	perature (Kirchnoff's							
	equations) and	i pressure on enthalpy of reactions	s; Hess's lawand its							
	applications; de	etermination of bond energy; Measurem	ient of heat of reaction							
	Zeroth law of	thermodynamics – Absolute Temperatu	re scale.							
II	Thermodynan	nics II								
	Second Law of	f thermodynamics - Limitations of firs	t law, spontaneity and							
	randomness; (Carnot's cycle; Concept of entropy,	entropy change for							
	reversible and irreversible processes, entropy of mixing, calculation of 18									
	entropy changes of an ideal gas and a van der waals gas with changes in									
	temperature, volume and pressure, entropy and disorder.									
	Free energy and work functions -Need for free energy functions, Gibbs free									
	energy, Helmh	oltz free energy – their variation with	temperature, pressure							
	and volume, cr	iteria for spontaneity; Gibbs-Helmholtz	equation –derivations							
	and application	s; Maxwell relationships.								

III	General Characteristics of d – block elements	
	Transition Elements – Electronic configuration – General periodic trend	
	variable valency, oxidation states, stability of oxidation states, colour,	18
	magnetic properties, catalytic properties and tendency to form complexes.	
	Comparative study of transition elements and non-transition elements –	
	comparison of II and III transition series with I transition series. Group	
	study of Titanium, Vanadium, Chromium, Iron, Nickel and Zinc groups	
IV	Ethers, Thioethers, Epoxides and carbonyl compounds	
	Nomenclature, isomerism, general methods of preparations, reactions involving cleavage of C-O linkages, alkyl group and ethereal oxygen. Zeisel's method of estimation of methoxy group.	
	Reactions of epoxides with alcohols, ammonia derivatives and $LiAlH_4$ - Thioethers- nomenclature, structure, preparation, properties and uses.	18
	Aldehydes and Ketones	
	Nomenclature, structure and reactivity of aliphatic and aromatic aldehydes and ketones; general methods of preparation and physical properties. Nucleophilic addition reactions, base catalysed reactions with mechanism- Aldol, Cannizzaro's reaction, Perkin reaction, Benzoin condensation, Haloform reaction, Knoevenagel reaction. Oxidation of aldehydes. Baeyer – Villiger oxidation of ketones. Reduction : Clemmensen reduction,Wolf- Kishner reduction, Meerwein – Pondorf Verley reduction, reduction with LiAlH ₄ and NaBH ₄ .	
V	Carboxylic Acids:	
	Nomenclature, structure, preparation and reactions of aliphatic and aromatic monocarboxylic acids. Physical properties, acidic nature, effect of substituent on acidic strength. HVZ reaction, Claisen ester condensation, Bouveault Blanc reduction, decarboxylation, Huns diecker reaction. Formic acid-reducing property.	18
	Reactions of dicarboxylic acids, hydroxyl acids and unsaturated acids.	
	Carboxylic acid Derivatives:	
	Preparations of aliphatic and aromatic acid chlorides, esters, amides and	
	anhydrides. Nucleophilic substitution reaction at the acyl carbon of acyl halide,	
	anhydride, ester, amide. Schottan-Baumann reaction. Claisen condensation,	
	Dieckmann and Reformatsky reactions, Hofmann bromamide degradation and Curtius rearrangement.	
	Active methylene compounds: Keto–enol tautomerism. Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate	

- 1. B. R. Puri and L. R. Sharma, *Principles of Physical Chemistry*, Shoban Lal Nagin Chand and Co., Thirty three edition,1992.
- 2. K. L. Kapoor, *A Textbook of Physical chemistry*, (volume 2 and 3), Macmillan, India Ltd, third edition, 2009.
- 3. P. L. Soni and Mohan Katyal, *Textbook of Inorganic Chemistry*, Sultan Chand & Sons, twentieth edition, 2006.
- 4. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, Vishal Publishing, fourth reprint, 2003.
- 5. S. M. Mukherji, and S. P. Singh, *Reaction Mechanism in Organic Chemistry*, Macmillan India Ltd., third edition, 1994.

Reference Books:

- 1. Maron, S. H. and Prutton C. P. *Principles of Physical Chemistry*, 4th ed.; The Macmillan Company: New york, 1972.
- 2. Lee, J. D. Concise Inorganic Chemistry, 4th ed.; ELBS William Heinemann: London, 1991.
- 3. Gurudeep Raj, Advanced Inorganic Chemistry, 26th ed.; Goel Publishing House: Meerut, 2001.
- 4. Atkins, P. W. & Paula, J. Physical Chemistry, 10th ed.; Oxford University Press: New York, 2014.
- 5. Huheey, J. E. *Inorganic Chemistry: Principles of Structure and Reactivity*, 4th ed; Addison Wesley Publishing Company: India, 1993.

Web-Resources:

- 1. <u>https://nptel.ac.in/courses/112102255</u>Thermodynamics
- 2. <u>https://nptel.ac.in/courses/104101136Advanced</u> transition metal chemistry

Course Outcomes:

On completion of the course the students should be able to

- **CO1:** explain the terms and processes in thermodynamics; discuss the various laws of thermodynamics and thermochemical calculations.
- **CO2:** discuss the second law of thermodynamics and its application to heat engine; discuss third law and its application on heat capacity measurement.
- **CO3:** investigate the chemistry of transition elements with respect to various periodic properties and group wise discussions.
- **CO4:** discuss the fundamental organic chemistry of ethers, epoxides and carbonyl compounds including named organic reactions.
- CO5: discuss the chemistry and named reactions related to carboxylic acids and their derivatives;

CO/PO		РО					PSO				
	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	М	S	S	S	М	S	S	S	S	S	
CO3	S	S	S	М	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	М	S	S	S	S	S	S	S	S	

Mapping of Course Outcomes with Programme Outcomes & Programme Specific Outcome

Semester-IV	V / Multi v Course II	NME II -Chemistry in Daily life	Course Code:	,							
Instruction	Hours $\cdot 2$	Credits: 2	Exam Hourse 3								
Internal Ma	arks: 25	External Marks: 75	Total Marks: 100								
Cognitive	K1 – Recalling										
Level	K2 – Understan	ding									
	K3 - Applying										
	K4 – Analyzing										
	K5 – Evaluating	•									
0	K6 - Creating	X6 - Creating									
Course	I his course	I his course									
Objectives	aims at providin	ig an overall view of the									
	• Importance										
	Chemistry c	Chemistry of building materials and food									
	Chemistry of	Chemistry of Drugs and pharmaceuticals									
UNIT		CONTENT									
I	General survey Air- componer pollution, greer Sources of wate of hardness by I	of chemicals used in everyday life for the and their importance; photosyn in - house effect and its impact in ou or, qualities of potable water, soft and l Reverse Osmosis.	household purposes. thetic reaction, air 1r life style. Water- nard water, Removal	6							
П	Building materi composition Thermoplastic -	als - cement, ceramics, glass and refra and application only. Plastics - Classification & application.	ctories - definition, Thermosetting &	6							
III	Food and Nutri importance as enzymes and vit	6									
IV	Cosmetics –too polish, perfume	Cosmetics –toothpaste, face powder, soaps and detergents, shampoos, nail polish, perfumes – preparations- possible hazards of cosmetic use.									
V	Pharmaceutical aspirin. Colour and applications	Pharmaceutical drugs- analgesics and anti pyretics – paracetamol and aspirin. Colour chemicals - pigments and dyes – classification examples and applications.									

1. Food chemistry, H. K. Chopra, P. S. Panesar, Narosa publishing house, 2010.

2.A textbook of pharmaceutical chemistry by Jayashree Ghosh, S Chandpublishing, 2012.

3.S. Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur, 2006.

4.B. K, Sharma, Industrial Chemistry; GOEL publishing house, Meerut, sixteenth edition, 2014.

5. Introduction to forensic chemistry, Kelly M. Elkins, CRC Press Taylor & Francis Group, 2019.

6.Jayashree Ghosh, Fundamental Concepts of Applied Chemistry, S. Chand & Co. Publishers, second edition, 2006.

Reference Books:

- 1. Randolph. Norris Shreve, Chemical Process Industries, Mc Graw Hill, Texas, fourth edition, 1977.
- 2.W. A. Poucher, Joseph A. Brink, Jr. Perfumes, Cosmetics and Soaps, Springer, 2000.

3.A. K. De, Environmental Chemistry, New Age International Public Co., 1990.

Course Outcomes:

On completion of the course the students should be able to

CO1: learn about the chemicals used in everyday life as well as air pollution and water pollution.

CO2: get knowledge on building materials cement, ceramics, glass and plastics.

CO3: acquire information about Food and Nutrition. Carbohydrates, Proteins, Fats.

CO4: awareness about Cosmetics Toothpastes, face powder, soaps and detergents.

CO5: have an idea about the pharmaceutical drugs analgesics and antipyretics

			РО			PSO				
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	S
CO3	S	S	S	М	S	S	S	S	S	М
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	М	S	S	S	S	S	S	S	S

Semester-IV / Ability		Pharmaceutical Chemistry	Course Code:					
Enhanceme	nt Course-I							
Instruction	Hours: 2	Credits: 2	Exam Hours: 3					
Internal Ma	Irks: 25	External Marks: 75	1 otal Marks: 100					
Lovel	K1 – Recalling	nding						
Level	K3 - Applying	hung						
	K4 – Analyzing	I						
	K5 – Evaluatin	g						
	K6 – Creating							
Course	The course air	ns at providing an overall view of						
Objectives	• Drugs							
	Import	ant Indian medicinal plants and antibiotic	cs					
	Import	ant common diseases and antibiotics						
	• Drugs	for major diseases like cancer and diabet	es					
	• Drugs	for major diseases like Hypertension. A	JDS and anemia					
UNIT		CONTENT		HOURS				
I	Introduction	CONTENT		noeno				
_	Important termi	nologies – drug pharmacognosy phar	macy pharmacology	6				
	pharmacodynan	nics. pharmacokinetics. clinica	al pharmacology.					
	pharmacotherap	eutics, chemotherapy, toxicology	v. pharmacophore.					
	antimetabolites.	mutation, bacteria, virus, fungi, actinon	nycetes, vaccines, and					
	therapeutic index							
	incrapeute muex.							
	Sources of drug	s – routes of administration.						
II	Indian medicin	nal plants & Antibiotics		_				
	Some important	Indian medicinal plants – tulsi, neem, k	izhanelli, adadodai and	6				
	thoothuvalai – u	ses.						
	Antibiotics – I	Definition – classification – structure ar	nd therapeutic uses of					
	penicillin, strept	omycin and chloramphenicol.						
Ш	p•, su •p							
	Common disea	ses and their treatment		6				
	Causes, preven	tion and treatment of the following	diseases: Insect borne					
	diseases – mala	ria, plague; Air borne diseases – diphth	eria, whooping cough,					
	common cold,	tuberculosis; Water borne diseases	– cholera, typhoid,					
	dysentery.							
	Digestive system	n – jaundice; Respiratory system – asthi	ma; Nervous system –					
	epilepsy.							
IV	Drugs for Majo	r diseases I		-				
	Cancer – com	mon causes – chemotherapy – anti	neoplastic agents -	6				
	classification – a	adverse effects of cytotoxic agents ; all	kyl malignant agents-					
	chloram bucil; an	nti metabolites – methotrexate, fluourac	il; Vinca alkaloids					
	- vincristine. D	iabetes- types -Management of diabe	tes – insulin ; oral					
	hypoglycemic a	gents- sulphonyl ureas – chlorprop	oamide; biguanides –					
	metformin.							
V	Drugs for Majo	r diseases II						
	Cardio vascular	drugs – cardio glycosides; anti arrhythmi	ic agents –	6				
	quinidine, prop	anol hydrochloride; anti- hypertensi	ve drugs- Aldomet,					

vasodilator- tolazoline hydrochloride, sodium nitro prusside. AIDS- causes-	
symptoms and prevention- anti HIV drugs - AZT, DDC.	
Anaemia – causes, types and control – anti anaemic drugs.	

- 1. Jayashree Ghosh, (1999), A textbook of pharmaceutical chemistry, 2nd ed., S. Chand & company, New Delhi.
- 2. Lakshmi S, (2004), Pharmaceutical chemistry, 3rd ed., Sultan chand & sons, Delhi.
- 3. Tripathi K D, (2018), Essentials of medical pharmacology, 8th ed., Jaypee brothers medical publishers (P) Limited, New Delhi.
- 4. Ashutosh Kaur, (2018), Medicinal chemistry, 7th ed., New age international (P) Limited, Publishers, New Delhi.

Reference Books:

- 1. Chatwal G R, (2013), Pharmaceutical chemistry, inorganic (vol-I) 6th ed., Himalaya Publishing house, Bombay.
- 2. Chatwal G R, (1991), Pharmaceutical chemistry, organic (vol-II)., Himalaya publishing house, Bombay.
- 3. Patrick G, (2002), Instant Notes Medicinal Chemistry, Viva Books Private Limited, NewDelhi.

Web-Resources:

1. http://www.pharmacy.umaryland.edu/faculty/amackere/courses/phar531_delete/lectures/qsar_1.pdf

- 2. http://www.indianmedicinalplants.info/
- 3. https://www.wipo.int/about-ip/en/

Course Outcomes:

On completion of the course the students should be able to

- **CO1:** Define the pharmaceutical terminologies; describe the principles in pharmacological activity, drug development.
- **CO2:** Discuss the development of drugs, structural activity.
- CO3: Apply the principles involved in structural activity and drug designing.
- **CO4:** explain classification of analgesics and anasthetics, and physiological functions of plasma Proteins
- CO5: explain the significance of clinical tests like blood urea, serum proteins and coronary risk index

			РО			PSO					
СО/РО	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	М	S	S	S	М	S	S	S	S	S	
CO3	S	S	S	М	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	М	S	S	S	S	S	S	S	S	

Semester- V/		Organic Chemistry - I Course Code:								
Core Course	e -V									
Instruction	Hours : 6	Credits: 5	Exam Hours: 3							
Internal Ma	rks: 25	External Marks: 75	Total Marks: 100							
Cognitive	K1 – Recalling									
Level	$K_2 - UnderstandK_3 - Applying$	nding								
	KJ - Applying									
	K5 – Evaluatin	a								
	K6 - Creating	6								
Course	This course aim	s to provide an understanding of								
Objectives	 stereois 	somerism in chirals and geometric isome	rism in olefins conform	ations						
_	of ethane and butane									
	 preparation and properties of aromatic and alightic pitro compounds and 									
	• preparation and properties of aromatic and anomatic intro compounds and									
	 propagation of different dyag, food colour and additives 									
	• preparation of different dyes, food colour and additives									
	• preparation and properties of five membered heterocycles like pyrrole, fu									
	and thiophene									
	• preparation and properties of six membered heterocycles like pyridine, quinoline									
	and iso	and isoquinoline.								
UNIT	CONTENT									
I	Stereochemistr	У								
	Fischer Projecti	on, New mann and Saw horse Projection	on formulae and their							
	interconversions	;		15						
	Geometrical iso	merism: cis – trans, syn – anti isomerism	\mathbf{E} / \mathbf{Z} notations.	15						
	Optical Isom	erism: Optical activity, specific r	otation, asymmetry,							
	enantiomers, dis	stereoisomers, meso structures - molecu	les with one and two							
	chiral centres, r	acemisation – methods of racemisation;	resolution - methods							
	of resolution.	C.I.P rules. R and S notations for or	ne and two chirality							
	(stereogenic) ce	ntres.	·							
	Molecules with	n no asymmetric carbon atoms – al	llenes and biphenvls.							
	Conformational	analysis of ethane and butane.								
II	Chemistry of N	itrogen Compounds – I								
	Nitroalkanes									
	Nomenclature.	somerism, preparation from alkylhalide	s, haloacids, alkanes:							
	physical proper	ties: reactions – reduction halogenation	ns Grignard reagent							
	Pseudoacid char	racter Nitro – acinitro tautomerism	no, originara reagona,	15						
	Aromatic nitro	compounds								
	Nomenclature	preparation – nitration from diazo	nium salts physical							
	nronerties: react	$p_{\rm reduction}$ of nitrobenzene In diffe	rent medium							
	Electrophilic substitution reactions TNT									
	Amines: Alinhatic amines									
	Annues: Allpha		de ana dati - a a a di							
	Nomenclature,	Nomenciature, isomerism, preparation – Hormanns degradation reaction,								
	Gabriel's phthal	imide synthesis, Curtius Schmidt re-arra	ngement.							
	Physical proper	ties, reactions – alkylation, acylation,	carbylamines reaction,							
	Mannich reaction	n, oxidation, basicity of amines.								

III	Chemistry of Nitrogen Compounds – II	
	Aromatic amines – Nomenclature, preparation – from nitro compounds, Hofmann's method; Schmidt reaction, properties – basic nature, ortho effect; reactions – alkylation, acylation, carbylamines reaction, reaction with nitrous acid, aldehydes, oxidation, Electrophilic substitution reactions, diazotization and coupling reactions; sulphanilic acid-zwitter ion formation.	15
	Diazonium compounds - Diazomethane, Diazo acetic ester - preparations and synthetic applications.	
	Dyes –Theory of colour and constitution; classification based on structure and application; preparation – Martius yellow, aniline yellow, methylorange, alizarin, indigo, malachite green.	
IV	 Hetero cyclic compounds Nomenclature and classification. General characteristics – aromatic character and reactivity. Five – membered hetero cyclic compounds 	15
	Pyrrole – preparation – from succinimide, Paal Knorr synthesis; reactions – reduction, basic character, acidic character, electrophilic substitution reactions, ring opening.	15
	Furan – preparation from mucic acid; reactions – hydrogenation, reaction with oxygen, Diels Alder reactions, formation of thiophene and pyrrole; Electrophilic substitution reaction.	
	Thiophene synthesis - fromacetylene; reactions – reduction; oxidation; electrophilic substitution reactions.	
V	Six – membered heterocyclic compounds	
	Pyridine – synthesis - from acetylene, Physical properties; reactions –basic character, oxidation, reduction, electrophilic substitution reactions; nucleophilic substitution - uses	15
	Condensed ring systems - Quinoline – preparation - Skraup synthesis and	
	Friedlander's synthesis; reactions – basic nature, reduction, oxidation;	
	electrophilic substitutions; nucleophilic substitutions – Chichibabin reaction - Isoquinoline – preparation by the Bischler – Napieralski reaction reduction	
	oxidation; electrophilic substitution.	

1. M. K. Jain, S. C. Sharma, Modern Organic Chemistry, Vishal Publishing, fourth reprint, 2009.

- 2. S. M. Mukherji, and S. P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan India Ltd., third edition, 2009.
- 3. Arun Bahl and B. S. Bahl, Advanced organic chemistry, New Delhi ,S. Chand & Company Pvt. Ltd., Multicolour edition, 2012.
- 4. P. L. Soniand H. M. Chawla, Text Book of Organic Chemistry, Sultan Chand & Sons, New Delhi, twenty ninth edition, 2007.

5. .C. N. Pillai, Text Book of Organic Chemistry, Universities Press (India) Private Ltd., 2009.

Reference Books:

1.R. T. Morrison and R. N. Boyd, Organic Chemistry, Pearson Education, Asia, sixth edition, 2012.

- 2. T. W. Graham Solomons, Organic Chemistry, John Wiley & Sons, eleventh edition, 2012.
- 3. A. Carey Francis, Organic Chemistry, Tata Mc Graw Hill Education Pvt. Ltd., New Delhi, seventh edition, 2009.
- 4. I. L. Finar, Organic Chemistry, Vol. (1&2), England, Wesley Longman Ltd, sixth edition, 2006.
- 5. J. A. Joule, and G. F. Smith, Heterocyclic Chemistry, Wiley, Fifth Edition, 2010.

Web - Resources:

1.www.epgpathshala.nic.in

- 2. www.nptel.ac.in
- 3. http:/swayam.gov.in

			РО			PSO				
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	S
CO3	S	S	S	М	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	М	S	S	S	S	S	S	S	S

Semester-V/		Physical Chemistry - I	Course Code:								
Core Course		Credita: 6	Evon Hound 2								
Instruction I	HOUFS : 0 mlzer 25	Crealls: 0 External Marke: 75	Exam Hours: 5								
Cognitivo	rks: 25 V1 Decelling	External Warks: 75	Total Marks: 100								
Level	K1 – Kecannig K2 – Understau	nding									
Level	K2 - Onderstan K3 - Applying	lung									
	K4 – Analyzing	r.									
	K5 – Evaluatin	g									
	K6 – Creating										
Course	The course aims	at providing an overall view of									
Objectives	Gibbs f	• Gibbs free energy, Helmholtz free energy and partial molar properties									
	Chemic	cal kinetics and different types of chemic	cal reactions								
	 adsorpt 	ion homogeneous and heterogeneous c	atalysis								
		s and macromolecules	adaly 515								
		s and macromolecules									
	 photoch 	nemistry, nuorescence and phosphoresco	ence.	HOUDG							
UNIT		CONTENT		HOURS							
1	Thermodynam	nics-III									
	Third low of th	armodynamica Normat hast theorem.	Applications of third								
		ermodynamics – Nernst neat theorem;									
	law - evaluatio	n of absolute entropies from heat cap	bacity measurements,								
	exceptions to third law.										
	Partial molar properties –chemical potential, Gibbs Duhem equation,										
	variation of che	variation of chemical potential with temperature and pressure, chemical									
	potential of a sy	stem of ideal gases, Gibbs -Duhem-Mar	gules equation.								
	Chemical equil	ibrium									
	Law of mass ac	tion – thermodynamic derivation – relat	tionship between Kp								
	and K _c – applic	ation to the homogeneous equilibria -	dissociation of PCl ₅								
	gas, N_2O_4 gas –	equilibrium constant and degree of diss	sociation –formation								
	of HI, NH ₃ , and	SO ₃ -heterogeneous equilibrium -dec	composition of solid								
	calcium carbona	ate -Lechatelier principle - van't Hoff	reaction isotherm –								
	temperature dep	endence of equilibrium									
	Constant – van	't Hoff reaction isochore – Clavperor	n equation–Clausius								
	Clayperon equat	tion and its applications.	1								
II	Chemical Kine	tics									
	Rate of reaction	n - Order and molecularity of simple and	d complex reactions								
	Rate laws- Rate	constants - derivation of rate constant	s and characteristics								
	for zero first o	order second and third order (equal i	nitial concentration)								
	Derivation of ti	ne for half change with examples Meth	ods of determination	15							
	of order of Volu	metry manometry and polarimetry	ous of determination								
	Effect of tempor	return on reaction rate temperature and	officiant concent of								
	entirect of temper	Ambanius equation Theories of read	etion notes. Collision								
	activation energ	y - Armenius equation. Theories of read	cuon rates–Collision								
	theory – deriva	tion of rate constant of bimolecular	gaseous reaction –								
	Failure of collis	sion theory. Lindemann's theory of un	imolecular reaction.								
	Theory of abso	olute reaction rates – Derivation of	rate constant for a								
	bimolecular read	ction – significance of entropy and free	energy of activation.								
	Comparison of a	collision theory and ARRT.									

III	Adsorption and Catalysis	
	Adsorption – Chemical and physical adsorption and their general	
	characteristics - distinction between them Different types of isotherms -	15
	Freundlich and Langmuir. Adsorption isotherms and their limitations –BET	15
	theory, kinetics of enzyme catalysed reaction –Michaelis- Menten equation.	
	Catalysis – general characteristics of catalytic reactions, auto catalysis,	
	promoters, negative catalysis, poisoning of a catalyst-theories of	
	homogenous and heterogeneous catalysis - Kinetics of Acid - base and	
	enzyme catalysis. Heterogenous catalysis	
IV	Colloids and Surface Chemistry	
	Colloids: Types of Colloids, Characteristics of Colloids (Lyophilic and	
	Lyophobic sols), Preparation of Sols-Dispersion methods, aggregation	
	methods, Properties of Sols- Optical properties, Electrical properties -	15
	Electrical double layer, Electro Kinetic properties- Tyndall effect, Electro-	
	osmosis, Electrophoresis, Coagulation or precipitation, Stability of sols,	
	associated colloids	
	Emulsions, Gels – preparation of Gels, Applications of colloids	
	Macromolecules : Molecular weight of Macromolecules-Number average	
	molecular weight- average molecular weight, Determination of Molecular	
	weight of molecules	
\mathbf{V}	Photochemistry	
	Laws of photochemistry - Lambert-Beer, Grotthus-Draper and Stark-	
	Einstein. Quantum efficiency. Photochemical reactions – rate law– Kinetics	15
	of H_2 - Cl_2 and H_2 - I_2 reactions, comparison between thermal and	15
	photochemical reactions. Jablonski diagram - radiative and non radiative	
	transitions.	
	Fluorescence – applications - phosphorescence – applications -	
	chemiluminescence and photosensitization- examples Chemistry of	
	Vision-cis retinal-vitamin A as a precursor - colour perception of vision	

- B. R. Puriand L. R. Sharma, Principles of Physical Chemistry, Chand and Co., forty eighth edition, 2021.
- 2. Peter Atkins, and Juliode Paula, James Keeler, Physical Chemistry, Oxford University press, International eleventh edition, 2018.
- 3. Arun Bahl, B. S. Bahl, G. D. Tuli Essentials of physical chemistry, 28th edition 2019, S, Chand & Co.
- 4. S. K. Dograand S. Dogra, Physical Chemistry through Problems: New Age International, fourth edition, 1996.
- 5. J. Rajaramand J. C. Kuriacose, Thermodynamics, Chand and CO., 1986.

Reference Books:

- 1. J. Rajaram and J. C. Kuriacose, Chemical Thermodynamics, Pearson, 1st edition, 2013.
- 2. Keith J. Laidler, Chemical kinetics, third edition, Pearson, 2003.
- 3. P. W. Atkins, and Juliode Paula, Physical Chemistry, Oxford University press, seventh edition, 2002.

- 4. K. L. Kapoor, A Textbook of Physical Chemistry, Macmillan India Ltd, third edition, 2009.
- 5. B. R. Puri, L. R. Sharma and M. S. Pathania, Principles of Physical Chemistry, Chand and Co. Jalendhar, forty first, edition, 2001

Web-Resources:

- 1. <u>https://nptel.ac.in</u>
- 2. https://swayam.gov.in
- 3. www.epgpathshala.nic.in

Course Outcomes:

On completion of the course the students should be able to

CO1: explain Gibbs and Helmholtz free energy functions and partial molar quantities

CO2: apply the concepts of chemical kinetics to predict the rate of the reaction and order of the reaction, demonstrate the effect of temperature on reaction rate.

CO3: compare chemical and physical adsorption, Freundlich and Langmuir adsorption isotherms, and differentiate between homogenous and heterogeneous catalysis.

CO4: demonstrate the types and characteristics of colloids, preparation of sols and emulsions, and determine the molecular weights of macromolecules.

CO5: utilize the concepts of photochemistry in fluorescence, phosphorescence, chemiluminescence and color perception of vision.

~~ ~~ ~			PO			PSO				
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	М	S	S	М	S
CO3	S	S	S	М	S	S	S	S	М	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	М	S	S	S	S	М	S	S	S

Semester-V/	Inorganic Chemistry-I Course Code:										
Core Cours	<u>e- VII</u>		БИЗ								
Instruction	$\frac{\text{Hours}: 5}{1 - 25}$	Credits: 4	Exam Hours: 3								
Internal Ma	rks: 25	External Marks: 75	Total Marks: 100								
Cognitive	KI – Recalling	1.									
Level	K2 - UnderstandK2 - Ampleting	nding									
	K3 - Applying										
	K4 – Analyzing K5 Evoluatin	a									
	K5 – Evaluatin K6 - Creating	8									
Course	The course aims	s to provide knowledge on									
Objectives		• nomonalatura isometriam and theory of an ardination accurate									
Objectives	• nomeno	lature, isomerism and theory	or coordination cor	npounds,							
	and che	elate complexes									
	• crystal	field theory, magnetic properties, stabili	ity of complexes and Jal	hn Teller							
	effect	tion and properties of motal carbonyle									
		the and properties of metal carbonyis									
	• Lantha	noids and actinoids									
	Prepara	ation and properties of inorganic polyme	ers								
UNIT		CONTENT		HOURS							
Ι	Co. andination	Chamiatury I									
	Co – orumation	Condination Chemistry Commercia	on of coordination								
	Definition –	Loordination Chemistry – Comparis	ion of coordination	10							
	complexes and double salt –IUPAC Nomenclature of coordination 12										
	compounds, Isomerism in co ordination compounds – types of ligands.										
	Werner's co or	lination theory – EAN rule –interpretat	tion of geometry and								
	magnetic prope	erties by Pauling's theory – geomet	try of co-ordination								
	compounds with	n co – ordination number 4 & 6 - limitati	ions of VBT.								
	Role of metal cl	nelates In living systems – haemoglobin	and chlorophyll								
	(structure only).										
II	Co- ordination	Chemistry - II									
	Crystal field th	eory – Crystal field splitting of energy	v levels in octahedral								
	and tetrahedral	complexes Crystal field stabilizati	on energy (CESE)								
	spectrochemical	series - calculation of CESE in octab	edral and tetrahedral	12							
	spectrochemical complexes f	actors influencing the magnitude of	crystalfield splitting								
	complexes = 1	actors influencing the magnitude of	erystamene spinting,								
	crystal field eff	ect on ionic radii, lattice energies, interj	pretation of magnetic								
	properties, spec	$ctra of [T1(H2O)6]^{37}$ - Jahn – Telle	r distortion and its								
	consequences.	Stability of complexes in aqueous	s solution, stability								
	constants- facto	rs affecting the stability of a complex,	thermodynamic and								
	kinetic stability	(elementary idea). Comparison of VBT	and CFT								
III	Metal Carbony	ls									
	Synergetics me	etal carbonyls – Mono and poly nuclea	ar carbonyls, General								
	methods of preparation of carbonyls – general properties of binary carbonyls										
	– Preparation, structure and bonding in carbonyls of Ni and Fe.										
	Ferrocene – Me	thods of preparation and structure.									
IV	Inner transitio	n elements (Lanthanoids and Actinoid	ls)								
	General charact	eristics of $f = block$ elements - Occurrent	 nce Oxidation states								
	Magnetic prop	erties Colour and spectra. Lanthan	oids and Actinoids	12							
1	I magnetic prop	ernes, corour and spectra- Lanthan	and monitolius,	1							

	Separation by ion – Exchange and Solvent extraction methods – Lanthanoids contraction – Chemistry of thorium and Uranium - Ores, Extraction and uses.	
V	Inorganic polymers General properties – classification of inorganic polymers based on element in the backbone (Si, S, B and P) - preparation and properties of silicones (polydimethyl siloxane) phosphorous based polymer (polyphosphazines), boron based polymers (borazine polymers) – industrial applications of inorganic polymers.	12

- 1. Puri B R, Sharma L R, Kalia K C (2011), Principles of Inorganic Chemistry, 31th Edition, Milestone Publishers & Distributors, Delhi.
- 2. Satya Prakash, Tuli G. D., Basu S. K., Madan R. D. (2009), Advanced Inorganic Chemistry, 18th Edition, S. Chand & Co., New Delhi
- 3. Lee J D, (1991), Concise Inorganic Chemistry, 4th Edition, ELBS William Heinemann, London.
- 4. W V Malik, G D Tuli, R D Madan, (2000), Selected Topics in Inorganic Chemistry, S. Chand and Company Ltd.
- 5. A. K. De, Textbook of Inorganic Chemistry, Wiley East Ltd, seventh edition, 1992

Reference Books:

- 1. Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2nd ed . , S. Chandand Company, New Delhi.
- 2. Gopalan R, (2009) <u>Inorganic Chemistry for Undergraduates</u>, Ist Edition, University Press (India) Private Limited, Hyderabad
- 3. Sivasankar B, (2013) Inorganic Chemistry. Ist Edition, Pearson, Chennai
- 4. Alan G. Sharp (1992), <u>Inorganic Chemistry</u>, 3rd Edition, Addition Wesley, England
- 5. Peter Atkins, Tina Overton, Jonathan Rourke and Mark Weller, Inorganic Chemistry, Oxford University Press, sixth edition, 2014.

Web-Resources:

- 1. www.epgpathshala.nic.in
- 2. www.nptel.ac.in
- 3. http:/swayam.gov.in

Course Outcomes:

On completion of the course the students should be able to

- CO1: explain isomerism, Werner's Theory and stability of chelate complexes
- CO2: discuss crystal field theory, magnetic properties and spectral properties of complexes.
- **CO3:** explain preparation and properties of metal carbonyls
- CO4: give a comparative account of the characteristics of lanthanoids and actinoids
- **CO5:** explain properties and uses of inorganic polymers of silicon, sulphur, boron and Phosphorous

CO/DO			РО			PSO				
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	S	S	S	М	S	S	S	S	М	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	М	S	S	S	S	S	S	S	S

Department of Chemistry - UG Mapping of Course Outcomes with Programme Outcomes & Programme Specific Outcome

			beparanent or onennaa y oo						
Semester-V/		Organic Qualitative Analysis and	Course Code:						
Core Practical - III		Organic Preparation (P)							
Instruction Hours : 3		Credits: 3	Exam Hours: 3						
Internal Marks: 40		External Marks: 60	Total Marks: 100						
Cognitive Level	K1 –	Recalling							
	K2 –	Understanding							
	КЗ -	Applying							
	K4 –	Analyzing							
K5 – Evaluating									
	K6 - Creating								
Course Objectives	This	course aims at providing							
	•	Methods of preparing organic compounds							
	•	Techniques of organic qualitative ana	lysis.						
	•	Derivatives of organic analysis.							
		CONTENT							
ORGANIC QUALITA	ATIVE	ANALYSIS AND ORGANIC PREPA	ARATION:						
Analysis of Simple Or	ganic c	compounds							
(a) characterization of	functio	nal groups							
(b) confirmation by pre-	eparatio	on of solid derivatives / characteristic							

colour reactions.

ORGANIC PREPARATION: (ANY FOUR)

Preparation of Organic Compounds involving the following chemical conversions.

- 1. Oxidation 2. Reduction 3. Hydrolysis 4. Nitration 5. Bromination 6. Diazotization
- 7. Osazone formation

Text Books:

1. Venkateswaran V, Veeraswamy R., Kulandaivel A.R., "Basic Principles of Practical Chemistry", 2nd edition, Sultan chand & sons, (1997)

2. Furniss, B. S., et al., "Vogel's textbook of Practical Organic Chemistry", 7th edition, ELBS, London (1984).

Web Resources:

1. http://www.vlab.co.in/index.php

Course Outcomes:

On completion of the course the students should be able to

CO1: know the techniques of organic qualitative analysis.

CO2: Preparation of organic compounds.

			РО					PSO		
CO/PO	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	S	S	S	S	S	S	S	S

	Department of Chemistry - UG										
Semester-V/	Physical Chemistry (P)	Course Code:									
Core Practical IV											
Instruction Hours : 3	Credits: 3	Exam Hours: 3									
Internal Marks: 40	External Marks: 60	Total Marks: 100									
Cognitive Level	K1 – Recalling K2 Understanding										
	K2 – Onderstanding K3 - Annlying										
	K4 – Analyzing										
	K5 – Evaluating										
	K6 - Creating										
Course Objectives	This course aims at providing										
	• basic principles of physical c	hemistry experiments									
	• hands on experience in carry	ing out the experiments									
	CONTENT										
1. Simple eutectic –	determination of eutectic temperat	ure and composition of naphthalene -									
diphenylamine or naphth	alene – diphenyl system										
2. Determination of tran	sition temperature of a salt hydrate.										
3. Determination of upp	er critical solution temperature of pher	nol – water system									
4. Determination of cond	entration of sodium chloride using phe	enol – sodium chloride system									
5. Determination of mo	lecular weight of an organic compou	und by Rast method using naphthalene or									
diphenyl as solvent											
6. Determination of the o	listribution co efficient of iodine betwee	een carbon tetrachloride and water.									
7. Determination of rate	constant of acid catalysed hydrolysis of	of an ester (Methyl acetate)									
8. Conductometric titrati	on of hydrochloric acid against sodium	n hydroxide									
9.Determination of cell c	constant										
Water Quality parame	ters										
1. Alkalinity											
2. Hardness											
3. Chloride											
4. Dissolved Oxygen											
5. TDS, TSS, TS and pH	of the given water sample.										
-											

1. Venkateswaran V, Veeraswamy R, Kulandaivelu A. R, "Basic Principles of Practical Chemistry", (2nd edition), Sultan Chand &Sons, New Delhi (1997).

Reference Books:

1. D. P. Shoemaker, C. W. Garland & J. W. Nibler, "Experiments in Physical Chemistry" 5th edition, McGraw Hill, 1989.

2.V. D. Athawala & P. Mathur, "Experimental Physical Chemistry", New age International publisher, 2001.

3. Findlay. A, "Practical Physical Chemistry", 7th edition, London, Longman, 1959.

4. Ahluwalia V. K, Dingra. S & Gulati. A, "College Practical Chemistry", Orient Longman Pvt Ltd., Hyderabad, 2005.

Web- Resources:

1. http://www.vlab.co.in/index.php

Course Outcomes:

On completion of the course the students should be able to

CO1: Describe the principles and methodology for the practical work.

CO2: Explain the procedure, data and methodology for the practical work

CO3: Apply the principles of phase rule and electrochemistry for carrying out the practical work

CO4: Demonstrate laboratory skills for safe handling of the equipment and chemicals

CO/PO			РО			PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	М	S	S	S	М
CO3	S	S	S	М	S	S	S	S	М	S
CO4	S	S	S	S	S	S	S	S	S	S

	Department of Chemistry - UG								
Semester-V / Discipline Specific Elective – I	Analytical Chemistry	Course Code:-							
Instruction Hours: 3	Credits: 3	Exam Hours	: 3						
Internal Marks -25	External Marks-75	Total Marks:	100						
Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create								
Course Objectives	 Students shall learn the storage and handling of various chemicals and aid procedures. Students shall demonstrate competence in collecting and interpreting of from their knowledge on analytical techniques. Students know the separation and purification technique of solvents. Students learn about thermo gravimetric analysis, differential ther analysis, analytical electrochemistry and its applications. Students learn about colorimetric analysis, coulometry analysis and application. 								
UNIT	CONTENT		HOURS						
I	LABORATORY SAFETY PRACTICES Laboratory Hygiene and safety: Storage and handling of corrosive, flammable, explosive, toxic, carcinogenic and poisonous chemicals. Simple first aid procedure from accident: Acid in eye, alkali in eye, acid burns, alkali burns, bromine burns, poisoning, inhalation of gases, cut by glasses and heat burns.								
Ш	DATA ANALYSIS Errors in chemical analysis, classification of errors, of instrumental errors, personal errors, constant errors, and – correction of determinant errors, random errors. Precirejection of data questioned. Significant figures. M deviation. Curve fitting.	DATA ANALYSIS Errors in chemical analysis, classification of errors, determinant errors, instrumental errors, personal errors, constant errors, and proportional errors – correction of determinant errors, random errors. Precision, accuracy and rejection of data questioned. Significant figures. Mean and standard deviation. Curve fitting							
III	SEPARATION & PURIFICATION TECHNIQUE General principles involved in the separation of pr extraction. Chromatography: Principles involved in adsorptio exchange, paper, thin layer, column, Electrophon Desiccants, vacuum drying, distillation, fractional distillation, azotropic distillation, crystallization ar principles and techniques.	ecipitates. Solvent n, partition and ion resis applications. distillation, steam ad sublimation –	9 Hrs						
IV	THERMO ANALYTICAL METHODS & ANALYTICAL ELECTROCHEMISTRY Thermo analytical Methods: Principles involved in instrumentation. Characteristics of TGA (CaC ₂ O ₄ . H ₂ O, DTA curves (CaC ₂ O ₄ .H ₂ O). Factors affecting TGA Thermometric titration of HCl Vs NaOH	TGA and DTA – $CuSO_4.5H_2O$) and and DTA curves.	9 Hrs						

	Analytical Electrochemistry: Redox potential – measurement and applications. Interpretation of chemical behavior. Electrolytic separations. Principles of Electrode position. Electro gravimetric (estimation of Cu and Ag).	
V	COLORIMETRIC ANALYSIS Colorimetric analysis: Laws of colorimetry – instrumentation. Nessler's and photoelectric colorimetric method- operation and application. Estimation of Ni, Cu and Fe.Techniques in kinetics: Principles and techniques used to follow the kinetics of ordinary and fast- photochemical reactions.	9 Hrs

1..R. Gopalan, P.S. Subramanian, and K. Rengarajan – "Elements of Analytical Chemistry", 2nd edition, Sultan chand & Co.,

2. Vogel. A" Text book of Quantitative Inorganic analysis", 4th edition, English language book society

Reference Books:

1. B.K. Sharma, "Instrumental methods of chemical analysis", Goel Publishing House, Merrut (1997).

2. Gurdeep Chatwal and Sham Anand, "Instrumental methods of chemical analysis" Himalaya publishing house (2005).

3. D.A. Skoog and D.M.West, "Fundamentals of analytical chemistry", 7th edition, Hartcourt College Publishers.

4. R.A. Day and A.L. Underwood – Quantitative analysis.

5. Mendham J, Denny R.C., Barnes J.D., Thomas M, "Vogel's Text book of quantitative chemical analysis", 6th edition, Pearson education.

Web- Resources:

1. http://www.chemexper.com

Course Outcomes:

On completion of the course the learner will be able

CO1: Aware of Laboratory hygiene and safety

CO2: Predict the data analysis in analytical techniques

CO3: Learn about separation and purification techniques

CO4: Recognize the thermo analytical methods such as TGA,DTA and analytical electrochemistry

CO5: Understand the colorimetric analysis and techniques in kinetics

CO/PO		РО					PSO						
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	Μ	S	S	S	S	S	Μ	W	S	W	S
CO2	S	S	S	Μ	S	S	S	S	S	W	S	S	S
CO3	S	S	S	S	S	S	S	S	М	S	S	S	S
CO4	S	S	S	Μ	S	S	S	S	М	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S

Semester-V / Ability Enhancement Course – II	Applied Chemistry Course Code:								
Instruction Hours: 2	Credits: 2	Exam Hou	ırs: 3						
Internal Marks -25	External Marks-75	ks: 100							
Cognitive Level	K1-Acquire / Remember K2-Understanding K3-Apply K4-Analyze K5-Evaluate K6-Create								
Course Objectives	 Students learn about types and hardness technic Students learn how to determine TDS,COD and Students understand about the application of L Students shall know about the physiochemical Students understand about the constituent of di 	 Students learn about types and hardness techniques of water. Students learn how to determine TDS,COD and BOD. Students understand about the application of Leather Chemistry. Students shall know about the physiochemical properties of milk. Students understand about the constituent of diary products. 							
UNIT	CONTENT	HOURS							
I	WATER CHEMISTRY I Water – types of water - soft and hard water – hardness hardness - Reverse osmosis and ion exchange method techniques.	6 Hrs							
П	WATER CHEMISTRY II Water Analysis - Determination of TDS, Total hardne BOD and COD.	ess by EDTA,	6 Hrs						
III	LEATHER CHEMISTRY Introduction, chief process used in leather manufacture and skin , leather processing – process before tannage – – vegetables tanning and chrome tanning.	6 Hrs							
IV	DIARY CHEMISTRY I Milk – Definition, physiochemical properties of milk, o milk, boiling, pasteurization, sterilization and homoger	6 Hrs							
V	DIARY CHEMISTRY II Definition of creams, butter, ghee and ice creams definition, need for making Powder. Principles involve	. Milk powder – d in drying	6 Hrs						

- B. K. Sharma, Industrial Chemistry, 13th edition, Goel Publishing House, Reprint 2008.
 M Mathur, Datta Roy D, Dinakar P, "Text book of Diary Chemistry", Indian council of Agricultural Research, New Delhi.

Reference Books:

- 1. Dilip Kumar Das, Introductory Soil Science, 1st Edition, Kalyani Publishers, Reprint 2002.
- 2. Lakshmanan, "Agricultural Chemistry", VV Publishers.

Web- Resources:

1. https:// www.chemistryguide.org/

2. http://chemcollective.org/home

Course Outcomes:

On completion of the course the learner will be able

CO 1: Develop an understanding about type of water.

- CO 2: Experience in water analysis such as TDS, Total hardness, BOD and COD
- **CO 3:** Expertise in Leather manufacture and processing.
- CO 4: Learn about constituent physical and chemical properties of milk.
- **CO 5:** Skills in preparation of dairy products such as butter, ghee, ice-cream.

CO/PO	РО						PSO						
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	S	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S

			Depair unent of of	iciliau y - uu								
Semester-VI	[/	Organic Chemistry-II	Course Code:									
Core Course	e-VIII											
Instruction	Hours : 6	Credits: 6	Exam Hours: 3									
Internal Ma	rks: 25	External Marks: 75	Total Marks: 100									
Cognitive	K1 – Recalling											
Level	$K_2 - Understand$	nding										
	K3 - Applying	-										
	K4 – Analyzing K5 Evoluatin											
	K6 – Creating	8										
Course	This course aim	'his course aims at providing knowledge on										
Objectives		a classification isolation and discussions the properties of allealaids and										
Ū		tion, isolation and discussing th	le properties of alkaloids and									
	terpenes.											
	• Preparati	ion and properties of saccharide	S.									
	Different	t molecular rearrangement.										
	Preparati	ion and properties of organomet	allic compounds.									
	• principles of green chemistry											
UNIT	CONTENT											
Ι												
	Alkaloids											
	Classification,	isolation, general properti	es – Hofmann Exhaustive	18 Hrs								
	Methylation; St	ructure elucidation – Conline, p	iperine, nicotine.									
	Terpenes: Clas	ssification, Isoprenerule, isolati	on and structural elucidation of									
	Citral, α - terpin	neol, Menthol, Geraniol and Car	nphor.									
II	Carbohydrates	5										
	Definition and	Classification of Carbohydrates	with examples. Determination									
	of configuratio	n. Definition of enantiomers,	diastereomers, epimers and									
	anomers with su	uitable examples.		18 Hrs								
	Monosaccharic	les – configuration – D and L h	exoses – aldohexoses and	10 1115								
	ketohexoses.	-										
	Glucose, Fructo	se – Occurrence, preparation, p	roperties, reactions, structural									
	elucidation and	uses.	•									
	Interconversion	s of sugar series – ascending, de	escending, aldose to ketose and									
	ketose to aldose	ketose to aldose										
	Disaccharides – sucrose lactose maltose - preparation properties and uses											
	(structural elucidation not required)											
	Polysaccharide	s = Source constituents and bio	logical importance of									
	homonolysacch	arides starch and callulose	nogical importance of									
	Inomoporysacch	omopolysaccharides – starch and cellulose.										

Department of Chemistry - UG

III	Molecular rearrangements								
	Molecular Rearrangement: Types of rearrangements, Mechanism for	18 Hrs							
	Benzidine, Favorskii, Clasien, Fries, Hofmann, Curtius, Schmidt, Beckmann,								
	Pinacol - pinacolone and dienone – phenol rearrangement.								
IV	Special reagents in organic synthesis								
	DCC, DIBAL, DMAP, NBS / NCS, PCC								
	Organometallic compounds in Organic Synthesis								
	Preparation, Properties and applications: Grignard Reagents, Organo Lithium								
	Compounds, Ziegler - Natta, Wilkinson, Metal Carbonyl, Zeiss's Salt.								
V	Green Chemistry								
	Principles, chemistry behind each principle and applications in chemical	18 Hrs							
	synthesis. Green reaction media – green solvents, green reagents and catalysts;								
	tools like microwave and ultra - sound in chemical synthesis.								

Text Books:

- 1 M. K. Jain, S. C. Sharma, Modern Organic Chemistry, Vishal Publishing, 4th reprint, 2009.
- 2 S. M. Mukherji, and S. P. Singh, Reaction Mechanism in Organic Chemistry, Macmillan India Ltd., 3rd edition, 2009
- 3 Arun Bahl and B. S. Bahl, Advanced organic chemistry, New Delhi, S. Chand & Company Pvt. Ltd., Multi colour edition, 2012.
- 4 P. L. Soni and H. M. Chawla, Text Book of Organic Chemistry, Sultan Chand & Sons, New Delhi, 29th edition, 2007.
- 5 C Bandyopadhya; An Insight into Green Chemistry; Published on 2020.

Reference Books:

- 1. R. T. Morrison and R. N. Boyd, Organic Chemistry, Pearson Education, Asia, 6th edition, 2012.
- 2. T. W. Graham Solomon, Organic Chemistry, John Wiley & Sons, 11th edition, 2012.
- 3. A. Carey Francis, Organic Chemistry, Tata Mc Graw Hill Education Pvt. Ltd., New Delhi, 7th edition, 2009.
- 4. I. L. Finar, Organic Chemistry, Vol. (1&2), England, Wesley Longman Ltd, 6th edition, 2006.
- 5. J. A. Joule, and G. F. Smith, Heterocyclic Chemistry, Wiley, 5th Edition, 2010.

Web-Resources:

- 1. www.epgpathshala.nic.in
- 2. www.nptel.ac.in
- 3. http:/swayam.gov.in
- 4. Virtual Textbook of Organic Chemistry.

Course Outcomes:

On completion of the course the learner will be able

- **CO 1:** The importance of alkaloids and terpenoids.
- CO 2: The classification, properties, structure and configuration of mono, di and polysaccharides
- **CO 3:** Predicting the molecular rearrangements with its types and mechanism.
- CO 4: To use reagents in organic synthesis.
- CO 5: Apply the knowledge of green reagents in organic synthesis

Mapping of Course	Outcomes with Program	me Outcomes & Progra	amme Specific Outcome
	0	0	1

CO/PO			РО			PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	S
CO3	S	S	S	М	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	М	S	S	S	S	S	S	S	S

Semester- V	VI/ Physical Chemistry -II Course Code:									
Core Course	<u>e - IX</u>									
Instruction	Hours: 6	Credits: 6	Exam Hours: 3							
Internal Ma	rks: 25	External Marks: 75	Total Marks: 100							
Cognitive	K1 – Recalling									
Level	K2 - UnderstandK2 - Ampleting	nding								
	KJ - Applying									
	K5 – Evaluatin	a								
	K6 – Creating									
Course	The course aims	at providing an overall view of the								
Objectives	• Pha	se diagram of one and two components	systems							
		lightive properties and separation techni	iques for hinery liquid m	ivturos						
	• Col	ingative properties and separation technin	iques for officiary fiquid fill	ixtures.						
	• Ele	ctrical conductance and transport number	er.							
	• Gal	vanic cells and significance of electroch	emical series.							
	• Me	asurement of EMF and industrial compo	onent.							
UNIT	CONTENT			HOURS						
I	Dhasa mula			10.77						
	Definition of to	rms, derivation of phase rule, applicati	ion to one component	18 Hrs						
		n and autoburg auton of phase fulle, application								
	systems – wate	r and supplur- super cooling, sublima	ation; two component							
	systems – solid	liquid equilibria - simple eutectic (lead	1 –silver and bismuth-							
	cadmium), free	zing mixtures (potassium iodide - wat	ter), compound							
	formation with	- congruent melting points (magnesi	um - zinc and							
	terric chloride	– water system), peritectic Change (s	sodium – potassium),							
	solid solution (g	old - silver); copper Sulphate – water s	system.							
II	Colligative pro	perties & Binary liquid mixtures		40.77						
	Relative loweri	ng of vapour pressure, osmosis, law	of osmotic pressure,	18 Hrs						
	derivation of ele	evation of boiling point and depression o	f freezing point.							
	Determination	of molecular masses using colligative	properties. Abnormal							
	molecular mass	es, molecular dissociation - degree of d	issociation – molecular							
	association.									
	Binary liquid n	nixtures								
	Ideal liquid mix	tures - non ideal solutions - azeotropic	mixtures –							
	Fractional distil	lation – partially miscible mixtures – ph	enol - water,							
	Triethylamine -	water, nicotine - water - effect of imput	rities on critical							
	solution tempera	ature; immiscible liquids – steam distilla	tion; Nernst							
	Distribution law	– applications.								
III	Electrical Cond	luctance and Transference								
	Arrhenius theo	ry of electrolytic dissociation – Ost	twald's dilution law,							
	limitations of A	Arrhenius theory : behavior of strong e	lectrolytes-inter ionic	18 Hrs						
	effects – Deb	ve Huckel theory – Onsager equation	tion (no derivation)							
	significance of	Onsager equation Debye Falkenbager	n effect Wien effect							
	significance of Onsager equation, Debye Faikennagen effect, wien effect.									
	dovice) transm	- Discharge of folis of electrolysis	ant's method movies							
	hour to the second	- fortage officiency and the fortage officiency and the fortage officiency and the fortage officiency and the fortage of the f	determine the reference							
	boundary metho	a – factors affecting transport number–	determination of ionic							
	mobility ; Koh	Irausch's law -applications; molar io	onic conductance and							

	viscosity (Walden's rule); applications of conductance measurements.	
IV	UNIT IV : Galvanic Cells and Applications	
	Galvanic cell, representation, reversible and irreversible cells, EMF and its	18 Hrs
	measurement - standard cell; relationship between electrical energy and	
	chemical energy; sign of EMF and spontaneity of a reaction,	
	Thermodynamics and EMF–calculation of ΔG , ΔH , and ΔS from EMF	
	data; reversible electrodes, electrode potential, standard electrode potential,	
	primary and secondary reference electrodes, Nernst equation for electrode	
	potential and cell EMF; types of electrodes - metal/metal ion, metal amalgam	
	/ metal ion, metal, insoluble salt / anion, gas electrode, redox electrode;	
	electro chemical series - applications of electrochemical series. Chemical	
	cells with and without transport, concentration cells with and without	
	transport.	
V	UNITV : Applications of EMF measurements	
	Applications of EMF measurements - determination of activity	18 Hrs
	coefficient of electrolytes, transport number, valency of ions, solubility	
	product, pH using hydrogen gas electrode, quinhydrone electrode and glass	
	electrode, potentiometric titrations - acid base titrations, redox titrations,	
	precipitation titrations, ionic product of water and degree of hydrolysis; redox	
	indicators - use of diphenylamine indicator in the titration of ferrous iron	
	against dichromate.	
	Industrial component	
	Galvanic cells - lead storage, Ni - Cd, Li and Zn - air, Al - air batteries	
	Fuel cells – H_2 - O_2 cell – efficiency of fuel cells Corrosion –	
	mechanism, types and methods of prevention.	

- 1. B.R. Puri and L.R. Sharma, Principles of Physical Chemistry, Shoban Lal Nagin Chand and Co., Forty eighth edition, 2021.
- 2. Peter Atkins, and Juliode Paula, James Keeler, Physical Chemistry, Oxford University press, International eleventh edition, 2018.
- 3. Arun Bahl, B.S. Bahl, G.D. Tuli, Essentials of physical chemistry, 28th edition 2019, S.Chand & Co.
- 4. S.K. Dogra and S. Dogra, Physical Chemistry through Problems : New Age International, fourth edition,1996.
- 5. J.Rajaram and J.C. Kuriacose, Thermodynamics, ShobanLal Nagin Chand and CO. 1986.

Reference Books:

- 1. K.L. Kapoor, A Textbook of Physical Chemistry, Macmillan India Ltd, third edition, 2009.
- 2. Gilbert.W.Castellen, Physical Chemistry, Narosa Publishing House, third edition, 1985.
- 3. P.W. Atkins and Juliode Paula, Physical Chemistry, Oxford University press, seventh edition, 2002
- 4. B.R. Puri, L.R.Sharma and M.S.Pathania, Principles of Physical Chemistry, Shoban lal Nagin Chand and Co.Jalendhar, forty first, edition, 2001
- 5. D.N. Bajpai, Advanced Physical Chemistry, S. Chand & Co., 2001

Web-Resources:

- 1. <u>https://nptel.ac.in</u>
- 2. <u>ttps://swayam.gov.inhttps://archive.nptel.ac.in/content/storage2/courses/1121081</u> 50/pdf/PPTs/MTS_07_m.pdf
- **3.** Thermodynamics-NPTEL<u>https://www.youtube.com/watch?v=f0udxGcoztE</u> Introduction to chemical equilibrium – MIT open courseware

Course Outcomes:

On completion of the course the students should be able to

- **CO1:** Construct the phase diagram for one component and two component systems.
- CO2: Identify an appropriate distillation method for the separation of binary liquid mixtures
- **CO3:** Explain the significance of Arrhenius theory, Debye-Huckel theory, Onsager equation and Kohlrausch's law.
- CO4: Construct electrochemical cell with the help of electrochemical series and calculate cell EMF
- **CO5:**.Demonstrate the applications of EMF and significance of potentiometric titrations, galvanic cells.

СО/РО			РО			PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	S
CO3	S	S	S	М	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	М	S	S	S	S	S	S	S	S

Semester-VI / Core Practical -V		Gravimetric Analysis, Physical Constant Determination and Spectrophotometry	Course Code:						
Instruction	Hours : 3	Credits: 3	Exam Hours: 3						
Internal Ma	arks: 25	External Marks: 75	Total Marks: 100						
Cognitive	K1 – Recalling								
Level	K2 – Understan	ding							
	K3 - Applying								
	K4 – Analyzing K5 – Evaluating								
	K6 – Creating								
Course	The course aims	at providing an overall view of the							
Objectives	• Techniques of gravimetric analysis.								
	• Determin	ation of physical constant of compound	ls						
	 Techniqu 	ies of Spectrophotometry							
	1	CONTENT							
GRAVIME	TRIC ANALYSI	S:							
1. Estima	tion of Lead as lea	id chromate.							
2. Estima	tion of Barium as	barium chromate.							
3. Estima	tion of Nickel as I	Nickel - DMG complex.							
4. Estima	tion Lead as Lead	sulphate							
5. Estima	tion of Barium as	barium sulphate							
DETERMI	NATION OF PH	YSICAL CONSTANTS							
Determinat	ion of boiling /me	ting points by semimicro method.							
SPECTRO	PHOTOMETRY	ANALYSIS							
1.Determina	tion of Nickel as N	lickel-DMG Complex							
2.Determina	tion of Iron as Iror	n(III) thiocyanate							
3.Determina	tion of Mg by EB	T-Method							
GROUP EX	PERIMENTS								
One pot mic	rowave synthesis 2	2,3-diphenyl quinoxaline and dibenzalp	opanone.						

1.Venkateswaran V, Veeraswamy R., Kulandaivel A.R., "Basic Principles of Practical Chemistry", 2nd edition, Sultan chand & sons, (1997)

2. Furniss, B.S., et al., "Vogel's textbook of Practical Organic Chemistry", 7th edition, ELBS, London (1984).

Web Resources:

1. http://www.vlab.co.in/index.php

Course Outcomes:

On completion of the course the students should be able to

CO1: learn the principles of gravimetric analysis

CO2:. learn the determination of physical constants of organic compounds

CO3: know the techniques of spectrophotomteric analysis

			РО			PSO					
CO/PO	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	М	S	S	S	S	М	S	
CO2	S	S	S	S	S	S	S	S	S	S	
CO3	S	М	S	S	S	S	М	S	S	S	

Department of Chemistry - UG

Semester- VI / Core Course	Project	Course Code:
X		
Instruction Hours : 3	Credits: 3	Exam Hours: -
Internal Marks: 25	External Marks: 75	Total Marks: 100

Semester-VI	/ Discipline	Fundamentals of Spectroscopy	Course Code:								
Specific Elec	Clive - 11	Credita 3	Exam Hound 2								
Instruction I	nours : 5 rks: 25	External Marks: 75	Exam nours: 5								
Cognitive	K1 _ Recalling	External Warks. 75									
Level	K1 – Kecannig K2 – Understa	nding									
	K3 - Applying	B									
	K4 – Analyzing	5									
	K5 – Evaluatin	g									
	K6 – Creating										
Course	This course is d	esigned to provide knowledge on									
Objectives	Electric	• Electrical and magnetic properties of organic and inorganic compounds.									
	Basic p	• Basic principles of UV - Visible spectroscopy.									
	Basic p	rinciple and instrumentation of infrar	ed spectrometry								
	Basic p	rinciple and instrumentation of NMR	spectrometry.								
	Basic p	principle and instrumentation of mass	spectrometry.								
UNIT		CONTENT		HOURS							
Ι	Microwave spo	ectroscopy									
	Rotation spectra – diatomic molecules (rigid rotator approximation) selection										
	rules – determination of bond length, effect of isotopic substitution –										
	instrumentation	instrumentation and applications 9 Hrs									
II	Ultra violet and	Ultra violet and Visible spectroscopy									
	Electronic spect	ra of diatomic molecules (Born Oppe	enheimer approximation)								
	- rotational fine	e structure of electronic vibration trans	nsitions – Frank Condon	0.11							
	principle – diss	ociation in electronic transitions - p	re-dissociation transition	9 118							
	- Types of trans	itions.									
	Applications of	UV - Woodward - Fieser rules a	s applied to conjugated								
	dienes and α , β	- unsaturated ketones. Elementary Pre-	oblems.								
III	Infrared spectr	oscopy									
	Selection rules,	vibrations of polyatomic molecules-	stretching and bending								
	vibrations (example a second	mple : Water, carbon – di - oxide – a	pplications –								
	determination of	f force constant, moment of inertia an	d internuclear distance –	9 Hrs							
	isotopic shift –a	pplication of IR spectra to simple org	anic and inorganic	/ 110							
	molecules – (gro	oup frequencies)									
IV	Nuclear magne	tic resonance spectroscopy:									
	NMR – theory of	of NMR – instrumentation – number of	f signals – chemical	0 Hrs							
	shift– peak are	as and proton counting – spin-spin	coupling –	71115							
	Applications, sh	ielding and deshielding of protons, cl	nemical shifts of								
	protons in hydro	ocarbons, and in simple mo	ono functional organic								
	compounds	compounds									
V	Mass spectrom	Mass spectrometry									
	Principle – diffe	Principle – different kinds of ionization – instrumentation – the mass spectrum									
	- types of ions -	- determination of molecular formula	- fragmentation and	9 Hrs							
	structural elucid	ation – McLafferty rearrangement; R	etro Diels Alder reaction								

- 1. Gopalan, R.; Subramaniam, P. S.; Rengarajan, K. *Elements of Analytical Chemistry*; S Chand: New Delhi, 2003.
- 2. Usharani, S. Analytical Chemistry, 1st ed.; Macmillan: India, 2002.
- 3. Banwell, C. N.; McCash, E. M. *Fundamentals of Molecular Spectroscopy*, 4th ed.; Tata McGraw Hill, New Delhi, 2017.
- 4. U. N. Dash, Analytical Chemistry Theory and Practice, Sultan Chand & Sons, 2nd Ed., 2005
- 5. B. K. Sharma, Spectroscopy, 22nd ed., Goel Publishing House, 2011.

Reference Books:

- 1. Sriva stava, A. K.; Jain, P. C. *Chemical Analysis an Instrumental Approach*, 3rd ed.; S. Chand, New Delhi, 1997.
- 2. Robert D Braun. Introduction to Instrumental Analysis; Mc. Graw Hill: New York, 1987.
- 3. Skoog, D. A.; Crouch, S. R.; Holler, F.J.; West, D. M. *Fundamentals of Analytical Chemistry*, 9th ed.; Harcourt college Publishers: USA, 2013.
- 4. Madan, R. L.; Tuli, G. D. *Physical Chemistry*, 2nd ed.; S. Chand: New Delhi, 2005.
- 5. Puri, B. R.; Sharma, L. R.; Pathania, M. S. *Principles of Physical Chemistry*, 43rd ed.; Vishal Publishing: Delhi, 2008.

Web-Resources:

- 1. http://vallance.chem.ox.ac.uk/pdfs/SymmetryLectureNotes2004.pdf
- 2. http://chemistry.rutgers.edu/undergrad/chem207/SymmetryGroupTheory.html
- 3. www.epgpathshala.nic.in
- 4. www.nptel.ac.in
- 5. http:/swayam.gov.in

Course Outcomes:

On completion of the course the students should be able to

CO1: explain electrical and magnetic properties of materials and microwave spectroscopy

CO2: apply selection rules to understand spectral transitions, explain Woodward - Fieser's

rule for the calculation of wavelength maximum of conjugated dienes

- CO3: explain theory, instrumentation and applications of Infrared spectroscopy
- CO4: explain theory, instrumentation and applications of NMR spectroscopy
- CO5: explain theory, instrumentation and applications of Mass spectrometry

Department of Chemistry - UG

			РО			PSO					
CO/PO	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	М	S	S	S	М	S	S	S	S	М	
CO3	S	S	S	М	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	М	S	S	S	S	S	S	S	S	

Semester-V		Inorganic Chemistry-II	Course Code:	,							
Discipline S	Specific Elective - III										
Instruction	Hours: 4	Credits: 3	Exam Hours: 3								
Internal Ma	arks: 25	External Marks: 75	Total Marks: 100								
Level	K1 – Kecalling K2 – Understanding										
Level	K3 - Applying										
	K4 – Analyzing										
	K5 – Evaluating										
	K6 - Creating										
Course	The course aims to prov	ide knowledge on									
Objectives	Trace elements and	I their role in the biological syste	m.								
	• Iron transport and s	Iron transport and storage									
	• Metallo enzymes, oxygen transport.										
	• Silicates and their a										
	Industrial application	ons of refractories, alloys, paints	and pigments.								
UNIT			HOURS								
Ι	Bioinorganic Chemistr										
	Essential and trace elen	12 hrs									
	and $7n^{2+}$ in biological s										
	ions – trace elements - As, Cd, Pb, Hg.										
П	Metal ion transport an	letal ion transport and storage									
	Iron – storage transport	Iron – storage, transport – Transferrin and Ferretin; Iron – porphyrins –									
	mvoglobin, haemoglobin – oxygen transport –Bohr effect : Sodium /										
	notassium nump calcium nump: transport and storage - Conner										
	and Zinc.	in pump, uunsport und storage	copper								
III	Metalloenzymes										
	Isomerase and synth	etases, structure of cvanocol	balamin (Vitamin								
	B ₁₂), nature of Co-C	bond: Metalloenzymes – func	ctions of carboxy	12 hrs							
	peptidase A, zinc metal	loenzyme – mechanism and use	s. Zn-Cu enzyme -								
	structure and function,	carbonic anhydrase. Vitamin B_{12}	as transferase and								
	isomerase – Iron – sul	phur proteins - $2Fe - 2S - rub$	predoxin, 4Fe-2S –								
	ferridoxin, Iron sulphur	cluster enzymes.									
	Invivo and Invitro nitro	ogen fixation – biological functi	ions of nitrogenase								
	and molybdo enzymes.		C								
IV	Silicates										
	Introduction – general j	properties of silicates, structure -	-types of silicates -	12 hrs							
	ortho silicates (zircon	n), pyro silicates (thortveitite	e), chain silicates								
	(pyroxenes), ring silica	ates (beryl), sheet silicates (tal	lc, mica, asbestos),								
	silicates having three dir	mensional structure (feldspars, ze	colites, ultramarines)								
V	Industrial Application	s of Inorganic Compounds									
	Refractories, pyrochem	ical, explosives. Alloys, Paints	s and pigments –	12 hrs							
	requirements of a goo	od paint; classification, constit	uents of paints –								
	pigments, vehicles, th	inners, driers, extenders, ant	i-skinning agents,								
	plasticizers, binders - ap	plication; varnishes - oils, spirit;	enamels.								
	Nano composite Hydrog	gels: synthesis, characterization a	nd uses.								

- 1. Puri B R, Sharma L R, Kalia K C (2011), Principles of Inorganic Chemistry, 31th ed., Milestone Publishers & Distributors, Delhi.
- 2. Satya Prakash, Tuli G. D., BasuS. K., Madan R. D. (2009), Advanced Inorganic Chemistry, 18th Edition, S. Chand & Co., New Delhi
- 3. Lee J D, (1991), Concise Inorganic Chemistry, 4th ed., ELBS William Heinemann, London.
- 4. W V Malik, G D Tuli, R D Madan, (2000), Selected Topics in Inorganic Chemistry, S. Chand and Company Ltd.
- 5. A. K. De, Textbook of Inorganic Chemistry, Wiley East Ltd, seventh edition, 1992.

Reference Books:

- 1. Madan R D, Sathya Prakash, (2003), Modern Inorganic Chemistry, 2nd ed., S. Chand and Company, New Delhi.
- 2. Gopalan R, (2009) <u>Inorganic Chemistry for Undergraduates</u>, Ist Edition, University Press (India) Private Limited, Hyderabad.
- 3. Sivasankar B, (2013) Inorganic Chemistry. Ist Edition, Pearson, Chennai.
- 4. Alan G. Sharp (1992), <u>Inorganic Chemistry</u>, 3rd Edition, Addition Wesley, England.
- 5. Peter Atkins, Tina Overton, Jonathan Rourke and Mark Weller, Inorganic Chemistry, Oxford University Press, sixth edition, 2014.

Web-Resources:

- 1. www.epgpathshala.nic.in
- 2. www.nptel.ac.in
- 3. http:/swayam.gov.in

Course Outcomes:

On completion of the course the students should be able to

CO1: ability to explain the importance of tracer elements on biological system.

CO2: explain the metal ion transport, Bohr effect, Na, K, Ca pump.

CO3: explain the function of Vitamin B12, Zn – Cu enzyme, ferredoxin, cluster enzymes.

CO4: classification and structure of silicates.

CO5: explain the manufacture of refractories, explosives, paints and pigments.

~~ ~~			РО			PSO					
СО/РО	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	М	S	S	S	М	S	S	S	S	S	
CO3	S	S	S	М	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	М	S	S	S	S	S	S	S	S	

Semester- V	/I / Ability	Agricultural Chemistry	Course Code:							
Enhanceme	Hourse - 111	Creditar 2	Evom Hounge 2							
Instruction Internal Me	nours : 2 orks: 25	Creuits: 2 External Marks: 75	Exam Hours: 5 Total Marks: 100							
	11 KS. 23 K1 _ Recalling	External Warks. 75								
Level	K1 – Kecannig K2 – Understan	ding								
Level	K3 - Applying	ung								
	K4 – Analyzing									
	K5 – Evaluating									
	K6 - Creating									
Course	This course ain	This course aims to providing the students								
Objectives	1. Students	learn about the composition of soil.								
	2. Students	understand the properties of soil.								
	3. Students	3. Students understand the source and properties of Micronutrient fertilizer.								
	4. Students s	4. Students study about the pest management and its control.								
	5. Students k	5. Students know the chemistry of Fungicide, Herbicide and Acaricide.								
UNIT		HOURS								
I	COMPOSITIO	N AND PROPERTIES OF SOIL								
	Definition of soi	oil – soil composition. Soil Physical Properties - soil texture								
	and structure, soi		6 Hrs							
	Soil chemical pr	Soil chemical properties – soil colloids – Inorganic colloids – clay minerals								
	- amorphous - organic colloids - significance on soil fertility, soil reaction.									
II	MICRONUTRI	ENT FERTILIZER								
	Secondary and r	nicronutrient fertilizers - complex and	mixed fertilizers -	6 Hrs						
	sources, manufac	ture, properties and reactions in soils.								
III	GREEN MANU	RE								
	Green manures	- green leaf manure - bulky organic	c and concentrated							
	organic manures	- compost -composting of coir pith; s	ugarcane trash, leaf	6 Hrs						
	litters and farm	wastes - oil cakes, bone meal, fish n	neal, guano poultry							
	manures - fertiliz	zer use efficiency – integrated nutrient m	nanagement.							
IV	PEST MANAG	EMENT & CONTROL								
	Pesticides, classi	fication of pesticides – mode of action	– characteristics –							
	uses and safety n	neasures in the analysis and handling of	pesticides.	6 Hrs						
	Insecticides. Ino	rganic Pesticides – borates. Organic	pesticides – organ							
	chlorine compou	nds – D.D.T. structure and mode of action \mathbf{D}	on.							
v	FUNGICIDES.	HERBICIDES & ACARICIDES								
	Fungicides – inor	rganic – sulphur compounds – Boredeau	x mixture.							
	Herbicides : Inorganic herbicides – Arsenical compounds - Organic 61									
	herbicides - Nitr	o-compounds – urea	1							
	Acaricides – F	Rodenticides – Attractance – Repell	ants – Fumigants							
	Defoliants.		0							

- 1. N.C. Brady, The nature and properties of soils Eurasia publishing house, (P) Ltd. 9th Ed. 1984.
- 2. Colling G.H., Commercial Fertilizers McGraw publishing house., 1955

Reference Books:

- 1. Biswas, T.D. and Mukeherjee S.K. Text book of soil science 1987.
- 2. A. J. Daji A. Text book of soil science Asia publishing house, Madras (1970).
- 3. Donahue, R. L. Miller, R. W. and shickluna, J. C. soils An introduction to soils and plant Growth Prentice Hall of India (P) Ltd., New Delhi 1987.
- 4. Colling G.H., Commercial Fertilizers McGraw publishing house 1955.
- 5. Lakshmanan, "Agricultural Chemistry", VVPublishers.,

Web Resources:

- 1. http://www.chemistryguide.org/
- 2. <u>http://chemcollective.org/home</u>

Course Outcomes:

On completion of the course the students should be able to

CO1: teach about the composition of soil

CO2: explain the properties of soil

CO3: Know micronutrient of soil.

CO4: acquire knowledge about pest management and control

CO5: study about Fungicide, Herbicide and Acaricides

			РО			PSO					
CO/PO	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	М	S	S	S	М	М	S	S	S	М	
CO3	S	S	S	М	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	М	S	S	S	S	М	S	S	S	

Semester-VI	/											
Skill Enhan	cement Course	Fuel Chemistry	Course Code:									
Instruction 1	Hours : 2	Credits: 2	Exam Hours: 3									
Internal Ma	rks: 25	External Marks: 75	Total Marks: 100									
Cognitive	K1 – Recalling											
Level	K2 – Understar	nding										
	K3 - Applying											
	K4 – Analyzing											
	K5 – Evaluating	g										
Course	Ko - Creating	- Creating e course aims to provide knowledge on										
Objectives		Classification of the last of										
Objectives	• Classifi	Classification of fuels.										
	Compo	• Composition of coal and its uses.										
	Refinin	• Refining of petroleum and its products.										
	 Propert 	ies and uses of petrochemicals.										
	• Determ	Determination of lubricants.										
UNIT		HOURS										
I	Review of energy sources:											
	Introduction, De	finition of Renewable and non – renewa	able energy sources –	6 hrs								
	Classification, c	haracteristics of fuels and their calorific	value									
II	Coal:											
	Uses of coal	(fuel and nonfuel) in various industri	es, its composition,									
	carbonizations of	of coal. Coal gas, producer gas and wate	er gas – composition	6 hrs								
	and uses. Proxin	nate and ultimate analysis of coal.										
III	Petroleum :											
	Composition o	f crude petroleum, Refining different	types of petroleum									
	products and th	eir applications. Reforming petroleum	and non- petroleum	6 hrs								
	fuels (LPG, CN	G, LNG, bio – gas, fuels derived from bi	omass).									
IV	Petrochemicals	:										
	Vinyl acetate,	inyl acetate, Propylene oxide, Isoprene, Butadiene - Preparation,										
	Properties and U	Jses.	-	6 hrs								
V	Lubricants:											
	Classification of	lubricants, properties and their determine	nation.	6 hrs								

1. Sharma, B. K. & Gaur, H. Industrial Chemistry, Goel Publishing House, Meerut (1996).

Reference Books:

- 1. Stocchi, E. Industrial Chemistry, Vol I, Ellis Horwood Ltd. UK (1990).
- 2. Jain, P. C. & Jain, M. Engineering Chemistry Dhanpat Rai & Sons, Delhi. 75

Course Outcomes:

On completion of the course the learner will be able

CO1: Review the energy sources.

CO2: Applications of coal.

CO3: Learn about refining of petroleum.

CO4: Know about the Petrochemicals.

CO5: Understand the Properties of lubricants.

CO/PO		РО					PSO						
	1	2	3	4	5	1	2	3	4	5	6	7	8
CO1	S	S	Μ	S	S	S	S	S	Μ	S	S	S	S
CO2	S	S	S	Μ	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	Μ	S	S	S	S
CO4	S	S	S	Μ	S	S	S	S	Μ	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S	S	S	S